6 research outputs found

    p-medicine: a medical informatics platform for integrated large scale heterogeneous patient data

    Get PDF
    Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare

    Distributed infrastructure for multiscale computing

    No full text
    Today scientists and engineers are commonly faced with the challenge of modelling, predicting and controlling multiscale systems which cross scientific disciplines and where several processes acting at different scales coexist and interact. Such multidisciplinary multiscale models, when simulated in three dimensions, require large scale or even extreme scale computing capabilities. The MAPPER project is developing computational strategies, software and services to enable distributed multiscale simulations across disciplines, exploiting existing and evolving e-Infrastructure. The resulting multi-tiered software infrastructure, which we present in this paper, has as its aim the provision of a persistent, stable infrastructure that will support any computational scientist wishing to perform distributed, multiscale simulations
    corecore