40 research outputs found

    Extracellular spermine triggers a rapid intracellular phosphatidic acid response in arabidopsis, involving PLDĪ“ activation and stimulating ion flux

    Get PDF
    Polyamines, such as putrescine (Put), spermidine (Spd), and spermine (Spm), are low-molecular-weight polycationic molecules found in all living organisms. Despite the fact that they have been implicated in various important developmental and adaptative processes, their mode of action is still largely unclear. Here, we report that Put, Spd, and Spm trigger a rapid increase in the signaling lipid, phosphatidic acid (PA) in Arabidopsis seedlings but also mature leaves. Using time-course and dose-response experiments, Spm was found to be the most effective; promoting PA responses at physiological (low Ī¼M) concentrations. In seedlings, the increase of PA occurred mainly in the root and partly involved the plasma membrane polyamine-uptake transporter (PUT), RMV1. Using a differential 32Pi-labeling strategy combined with transphosphatidylation assays and T-DNA insertion mutants, we found that phospholipase D (PLD), and in particular PLDĪ“ was the main contributor of the increase in PA. Measuring non-invasive ion fluxes (MIFE) across the root plasma membrane of wild type and pldĪ“-mutant seedlings, revealed that the formation of PA is linked to a gradual- and transient efflux of K+. Potential mechanisms of how PLDĪ“ and the increase of PA are involved in polyamine function is discussed

    Sedimentology of the distal fan and lake deposits of the Tianshui- Qinan Basin (Central China): evidences against a possible eolian origin

    Get PDF
    In this paper we analyze two sections within the Tianshui-Qinan Basin, a closed basin in Central China. The deposits are Miocene and Pliocene in age and in recent times they have been considered as loess. The preliminary sedimentological study indicates a closed lacustrine basin, with a very flat topography in the inner parts. Periodical desiccation and subaerial exposure periods of both mudflats and shallow lakes caused important reworking of the sediments. The lake margins were ramp-like with different energy levels. Low energy lake margins are represented by marls, intraclastic and palus- trine limestones, whereas higher energetic levels are indicated by rippled sands and silts

    Early Response to Dehydration 7 Remodels Cell Membrane Lipid Composition During Cold Stress in Arabidopsis

    Get PDF
    Plants adjust to unfavorable conditions by altering physiological activities such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (Early Response to Dehydration 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely-related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids, and was associated with membranes. Lipid components and cold-induced reduction of PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with modification of membrane lipid composition

    Analyzing Plant Signaling Phospholipids Through 32Pi-Labeling and TLC

    No full text
    Lipidomic analyses through LC-, GC-, and ESI-MS/MS can detect numerous lipid species based on headgroup and fatty acid compositions but usually miss the minor phospholipids involved in cell signaling because of their low chemical abundancy. Due to their high turnover, these signaling lipids are, however, readily picked up by labeling plant material with (32)P-orthophosphate and subsequent analysis of the lipid extracts by thin layer chromatography. Here, protocols are described for suspension-cultured tobacco BY-2 cells, young Arabidopsis seedlings, Vicia faba roots, and Arabidopsis leaf disks, which can easily be modified for other plant species and tissues

    AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis

    Get PDF
    Phosphatidylinositol 3-phosphate (PI3P) is an essential membrane signature for both autophagy and endosomal sorting that is synthesized in plants by the class III phosphatidylinositol 3-kinase (PI3K) complex, consisting of the VPS34 kinase, together with ATG6, VPS15, and either VPS38 or ATG14 as the fourth subunit. Although Arabidopsis (Arabidopsis thaliana) plants missing the three core subunits are infertile, vps38 mutants are viable but have aberrant leaf, root, and seed development, Suc sensing, and endosomal trafficking, suggesting that VPS38 and ATG14 are nonredundant. Here, we evaluated the role of ATG14 through a collection of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and T-DNA insertion mutants disrupting the two Arabidopsis paralogs. atg14a atg14b double mutants were relatively normal phenotypically but displayed pronounced autophagy defects, including reduced accumulation of autophagic bodies and cargo delivery during nutrient stress. Unexpectedly, homozygous atg14a atg14b vps38 triple mutants were viable but showed severely compromised rosette development and reduced fecundity, pollen germination, and autophagy, consistent with a need for both ATG14 and VPS38 to fully actuate PI3P biology. However, the triple mutants still accumulated PI3P, but they were hypersensitive to the PI3K inhibitor wortmannin, indicating that the ATG14/VPS38 component is not essential for PI3P synthesis. Collectively, the ATG14/VPS38 mutant collection now permits the study of plants altered in specific aspects of PI3P biology
    corecore