79 research outputs found

    Introduction to Big Data in Education and Its Contribution to the Quality Improvement Processes

    Get PDF
    In this chapter, we introduce the readers to the field of big educational data and how big educational data can be analysed to provide insights into different stakeholders and thereby foster data driven actions concerning quality improvement in education. For the analysis and exploitation of big educational data, we present different techniques and popular applied scientific methods for data analysis and manipulation such as analytics and different analytical approaches such as learning, academic and visual analytics, providing examples of how these techniques and methods could be used. The concept of quality improvement in education is presented in relation to two factors: (a) to improvement science and its impact on different processes in education such as the learning, educational and academic processes and (b) as a result of the practical application and realization of the presented analytical concepts. The context of health professions education is used to exemplify the different concepts

    Beyond xMOOCs in healthcare education : study of the feasibility in integrating virtual patient systems and MOOC platforms

    Get PDF
    Background. Massive Open Online Courses (MOOCs) are an emerging trend in online learning. However, their technology is not yet completely adjusted to the needs of healthcare education. Integration of Virtual Patients within MOOCs to increase interactivity and foster clinical reasoning skills training, has been discussed in the past, but not verified by a practical implementation.Objective. To investigate the technical feasibility of integrating MOOCs with Virtual Patients for the purpose of enabling further research into the potential pedagogical benefits of this approach.Methods. We selected OpenEdx and Open Labyrinth as representative constituents of a MOOC platform and Virtual Patient system integration. Based upon our prior experience we selected the most fundamental technical requirement to address. Grounded in the available literature we identified an e-learning standard to guide the integration. We attempted to demonstrate the feasibility of the integration by designing a “proof-of-concept” prototype. The resulting pilot implementation was subject of verification by two test cases.Results. A Single Sign-On mechanism connecting Open Labyrinth with OpenEdx and based on the IMS LTI standard was successfully implemented and verified.Conclusion. We investigated the technical perspective of integrating Virtual Patients with MOOCs. By addressing this crucial technical requirement we set a base for future research on the educational benefits of using virtual patients in MOOCs. This provides new opportunities for integrating specialized software in healthcare education at massive scale

    Actions to empower digital competences in healthcare workforce: a qualitative approach

    Get PDF
    While healthcare systems are taking advantage of the ICT to improve healthcare services, healthcare workforce needs additional competencies in order to continue the provision of the best achievable care. In this paper emphasis is given to an active research effort taken during the MEI2015 Conference. Based on hands-on group-work, participants identified the actions needed to boost the acquisition of IT competences by healthcare workforce and collaboratively indicated the most important actions. The leading priority actions were integration of IT into Curriculum, continuous IT/eHealth training at the work place, raising awareness of IT competences, participatory decisions for actions, match healthcare applications to users’ own context, inclusion of professionals in the development of eHealth projects. Interestingly, the proposed actions coupling the outcomes of another study following a different methodology, but also support the cooperation opportunities on IT skills for healthcare workforce. The latter formed a set of recommendations which were proposed within the CAMEI coordination and support action of EC-FP7

    MOOC learners' engagement with two variants of virtual patients : a randomised trial

    Get PDF
    Introduction: Massive Open Online Courses (MOOCs) are an increasingly popular form of education in health professional education. VPs have been introduced in MOOCs to increase interactivity. There is a lack of research in understanding the reasons behind high dropout rates in MOOCs. We explored how learners interact with VPs and compared the significance of different VP designs on dropout rates. Methods: RCT of 378 participants split into two groups to interact with two VPs using different design: branching and linear. Data on node progression and VP attempts was analysed using descriptive and quantitative analysis. Results: Eight groups of learner interaction patterns were identified. The majority of learners completed the VP in a linear path in one attempt. A significant number either completed the case in a loop path in one attempt, completed in a linear path in multiple attempts or dropped out without attempting the case. VP design has a significant effect on dropout rates of learners. There is a higher dropout rate from a branched VP compared to linear VP. Discussion: Prior research showed that branched VPs are more engaging and promote greater learning compared to linear VPs. However, our results indicate that branched VPs had greater dropout compared to VPs that require less time to be solved. Conclusions: We conclude that branching had a negative effect on completion of the VP activity in the MOOC. Moreover, we believe that more complex VPs require more effort on task and this might not be a design that facilitates the interaction in a MOOC audience, where the participants might wish to acquire the basic medical knowledge offered by the course

    Virtual patients in a behavioral medicine massive open online course (MOOC) : a case-based analysis of technical capacity and user navigation pathways

    Get PDF
    BACKGROUND: Massive open online courses (MOOCs) have been criticized for focusing on presentation of short video clip lectures and asking theoretical multiple-choice questions. A potential way of vitalizing these educational activities in the health sciences is to introduce virtual patients. Experiences from such extensions in MOOCs have not previously been reported in the literature. OBJECTIVE: This study analyzes technical challenges and solutions for offering virtual patients in health-related MOOCs and describes patterns of virtual patient use in one such course. Our aims are to reduce the technical uncertainty related to these extensions, point to aspects that could be optimized for a better learner experience, and raise prospective research questions by describing indicators of virtual patient use on a massive scale. METHODS: The Behavioral Medicine MOOC was offered by Karolinska Institutet, a medical university, on the EdX platform in the autumn of 2014. Course content was enhanced by two virtual patient scenarios presented in the OpenLabyrinth system and hosted on the VPH-Share cloud infrastructure. We analyzed web server and session logs and a participant satisfaction survey. Navigation pathways were summarized using a visual analytics tool developed for the purpose of this study. RESULTS: The number of course enrollments reached 19,236. At the official closing date, 2317 participants (12.1% of total enrollment) had declared completing the first virtual patient assignment and 1640 (8.5%) participants confirmed completion of the second virtual patient assignment. Peak activity involved 359 user sessions per day. The OpenLabyrinth system, deployed on four virtual servers, coped well with the workload. Participant survey respondents (n=479) regarded the activity as a helpful exercise in the course (83.1%). Technical challenges reported involved poor or restricted access to videos in certain areas of the world and occasional problems with lost sessions. The visual analyses of user pathways display the parts of virtual patient scenarios that elicited less interest and may have been perceived as nonchallenging options. Analyzing the user navigation pathways allowed us to detect indications of both surface and deep approaches to the content material among the MOOC participants. CONCLUSIONS: This study reported on first inclusion of virtual patients in a MOOC. It adds to the body of knowledge by demonstrating how a biomedical cloud provider service can ensure technical capacity and flexible design of a virtual patient platform on a massive scale. The study also presents a new way of analyzing the use of branched virtual patients by visualization of user navigation pathways. Suggestions are offered on improvements to the design of virtual patients in MOOCs

    A framework for different levels of integration of computational models into web-based virtual patients

    Get PDF
    BACKGROUND: Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pathological processes. OBJECTIVE: The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. METHODS: The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. RESULTS: The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. CONCLUSIONS: This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome

    A Formal Approach to Distinguish Games, Toys, Serious Games & Toys, Serious Re-purposing & Modding and Simulators

    Get PDF
    While the concept of serious game has considerably evolved in the last two decades, it still needs to be clearly differentiated from other types of artifacts. Thus, for most outside the domain, there is a degree of confusion about the relationship between serious games and other related applications such as simulators or the re-purposing of entertainment games within educational practices. This article proposes a formal approach towards classifying Games, Toys, Serious Games, Serious Toys, Serious Re-purposing & Modding and Simulators. The aim of this theoretical work is twofold. Firstly, on a practical level, this approach aims at helping actors from different ecosystems, such as health, for instance, to differentiate between these various devices and use them to their best advantage. Secondly, from a research perspective, based on a formal approach, our work aims to contribute to the development of a taxonomy for gamified intervention with serious purposes. This formal approach allows us to demonstrate that unique combinations can be proposed to distinguish each kind of application. In this context, Serious Games can be seen as a specific purpose and not as a synonym for other existing applications
    corecore