6 research outputs found

    Secondary Prevention Among Uninsured Stroke Patients: A Free Clinic Study

    Get PDF
    OBJECTIVES: Free clinics manage a diversity of diseases among the uninsured. We sought to assess the medical management of stroke in a population of uninsured patients. METHODS: A retrospective chart review was conducted to collect chronic disease statistics from 6558 electronic medical records and paper charts at nine free clinics in Tampa, Florida, from January 2016 to December 2017. Demographics and risk factors were compared between stroke patients and non-stroke patients. Medication rates for several comorbidities were also assessed. RESULTS: Two percent (107) of patients had been diagnosed with a stroke. Stroke patients were older (mean (M) = 56.0, standard deviation (SD) = 11.2) than the rest of the sample (M = 43.3, SD = 15.4), p \u3c 0.001 and a majority were men (n = 62, 58%). Of the stroke patients with hypertension (n = 79), 81% (n = 64) were receiving anti-hypertensive medications. Of the stroke patients with diabetes (n = 43), 72% (n = 31) were receiving diabetes medications. Among all stroke patients, 44% were receiving aspirin therapy (n = 47). Similarly, 39% of all stroke patients (n = 42) were taking statins. CONCLUSIONS: Uninsured patients with a history of stroke may not be receiving adequate secondary prevention highlighting the risk and vulnerability of uninsured patients. This finding identifies an area for improvement in secondary stroke prevention in free clinics

    T-Regulatory Cells Confer Increased Myelination and Stem Cell Activity after Stroke-Induced White Matter Injury

    No full text
    Stroke-induced hypoxia causes oligodendrocyte death due to inflammation, lack of oxygen and exacerbation of cell death. Bone marrow-derived stem cells (BMSCs) possess an endogenous population of T-regulatory cells (Tregs) which reduce secretion of pro-inflammatory cytokines that lead to secondary cell death. Here, we hypothesize that oligodendrocyte progenitor cells (OPCs) cultured with BMSCs containing their native Treg population show greater cell viability, less pro-inflammatory cytokine secretion and greater myelin production after exposure to oxygen-glucose deprivation and reoxygenation (OGD/R) than OPCs cultured without Tregs. OPCs were cultured and then exposed to OGD/R. BMSCs with or without Tregs were added to the co-culture immediately after ischemia. The Tregs were depleted by running the BMSCs through a column containing a magnetic substrate. Fibroblast growth factor beta (FGF-β) and interleukin 6 (IL-6) ELISAs determined BMSC activity levels. Immunohistochemistry assessed OPC differentiation. OPCs cultured with BMSCs containing their endogenous Tregs showed increased myelin production compared to the BMSCs with depleted Tregs. IL-6 and FGF-β were increased in the group cultured with Tregs. Collectively, these results suggest that BMSCs containing Tregs are more therapeutically active, and that Tregs have beneficial effects on OPCs subjected to ischemia. Tregs play an important role in stem cell therapy and can potentially treat white matter injury post-stroke

    Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment

    No full text
    Stroke remains a major cause of death and disability in the United States and around the world. Solid safety and efficacy profiles of novel stroke therapeutics have been generated in the laboratory, but most failed in clinical trials. Investigations into the pathology and treatment of the disease remain a key research endeavor in advancing scientific understanding and clinical applications. In particular, cell-based regenerative medicine, specifically stem cell transplantation, may hold promise as a stroke therapy, because grafted cells and their components may recapitulate the growth and function of the neurovascular unit, which arguably represents the alpha and omega of stroke brain pathology and recovery. Recent evidence has implicated mitochondria, organelles with a central role in energy metabolism and stress response, in stroke progression. Recognizing that stem cells offer a source of healthy mitochondria—one that is potentially transferrable into ischemic cells—may provide a new therapeutic tool. To this end, deciphering cellular and molecular processes underlying dysfunctional mitochondria may reveal innovative strategies for stroke therapy. Here, we review recent studies capturing the intimate participation of mitochondrial impairment in stroke pathology, and showcase promising methods of healthy mitochondria transfer into ischemic cells to critically evaluate the potential of mitochondria-based stem cell therapy for stroke patients
    corecore