22 research outputs found

    Targeted delivery of TNF-α to tumor vessels : gene therapy approach

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The cell type dependent sorting of CD9- and CD81 to extracellular vesicles can be exploited to convey tumor sensitive cargo to target cells

    No full text
    AbstractExtracellular vesicles (EVs) are lipid membrane-bound particles involved in cell-to-cell communication through a delivery of regulatory molecules essential for physiological processes. Since EVs efficiently vectorize specific cargo molecules, they have been proposed as suitable vehicles for therapeutic agents. Drug loading into EVs can be achieved by active, exogenous strategies or by genetic modifications of vesicle-producing cells. With the aim to produce EVs conveying therapeutic proteins, we genetically engineered and compared HEK293 to tumor cells. Tetraspanin-based RFP fusions were found to be more stable and preferentially sorted into EVs in HEK293. EVs isolated from genetically modified HEK293 cells media were captured by cancer cells, efficiently delivering their cargo. Cathepsin B cleavage site introduced between CD9/CD81 and RFP was recognized by tumor specific proteases allowing the release of the reporter protein. Our results indicate HEK293 cells as a preferential system for the production of EVs and pave the way to the development of nano-platforms for the efficient delivery of therapeutic proteins and prodrugs to tumor cells

    Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles : New nanotools for cancer treatment

    No full text
    Exosomes are naturally secreted nanovesicles that have recently aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. These 30–100 nm sized vesicles are released from the cells into the extracellular space and ultimately into biofluids in a tightly regulated way. Their molecular composition reflects their cells of origin, may confer specific cell or tissue tropism and underlines their biological activity. Exosomes and other extracellular vesicles (EVs) carry specific sets of proteins, nucleic acids (DNA, mRNA and regulatory RNAs), lipids and metabolites that represent an appealing source of novel noninvasive markers through biofluid biopsies. Exosome-shuttled molecules maintain their biological activity and are capable of modulating and reprogramming recipient cells. This multi-faceted nature of exosomes hold great promise for improving cancer treatment featuring them as novel diagnostic sensors as well as therapeutic effectors and drug delivery vectors. Natural biological activity including the therapeutic payload and targeting behavior of EVs can be tuned via genetic and chemical engineering. In this review we describe the properties that EVs share with conventional synthetic nanoparticles, including size, liposome-like membrane bilayer with customizable surface, and multifunctional capacity. We also highlight unique characteristics of EVs, which possibly allow them to circumvent some limitations of synthetic nanoparticle systems and facilitate clinical translation. The latter are in particular correlated with their innate stability, ability to cross biological barriers, efficiently deliver bioactive cargos or evade immune recognition. Furthermore, we discuss the potential roles for EVs in diagnostics and theranostics, and highlight the challenges that still need to be overcome before EVs can be applied to routine clinical practice

    Acidification of blood plasma facilitates the separation and analysis of extracellular vesicles

    Get PDF
    Background: Blood plasma is available with minimal invasive sampling, it has significant diagnostic utility, and it is a valuable source of extracellular vesicles (EVs). Neverthe- less, rich protein content, the presence of lipoproteins (LPs) that share similar biophysical properties, and relatively low abundance of EVs, especially those of rare subpopulations, make any downstream application a very challenging task. The growing evidence of the intricate surface interactome of EVs, and the association of EVs with LPs, impose further challenges during EV purification, detection, and biomarker analyses. Objectives: In this study, we tackled the fundamental issues of plasma EV yield and LP co-isolation and their implications in the subsequent marker analyses. Methods: Moderate acidification of plasma was combined with size exclusion chromatography (SEC) and/or differential centrifugation (DC) to disrupt LPs and improve recovery of EVs and their subsequent detection by immunoassays and single-particle analysis methods. Results: Our results demonstrate a surprisingly efficient enrichment of EVs (up to 3.3-fold higher than at pH 7) and partial depletion of LPs (up to 61.2%). Acidification of blood plasma samples enabled a quick single-step isoelectric precipitation of up to 20.4% of EVs directly from plasma, upon short low-speed centrifugation. Conclusion: Thus, acidification holds potential as a simple and inexpensive methodological step, which improves the efficacy of plasma EV enrichment and may have implications in future biomarker discoveries

    Secretome of in vitro cultured human embryos contains extracellular vesicles that are uptaken by the maternal side

    Get PDF
    Communication between embryo and maternal endometrium occurs during a specific time frame in which implantation is possible. Here we demonstrate for the first time that conditioned media from non-manipulated human embryos cultured in vitro for 3 days or up to the blastocyst stage contain extracellular vesicles (EVs) with a diameter of 50 to 200 nm and bearing the traditional microvesicle and exosome marker proteins CD63, CD9 and ALIX. The embryonic origin of these EVs has been confirmed by the presence of stemness gene transcripts and their enrichment in the non-classical HLA-G protein. NANOG and POU5F1 transcripts were shown to be contained in vesicles deriving from embryos at different stages of development. In line with a higher detection rate of the HLA-G protein in blastocysts compared to cleavage stage embryos, a significantly higher amount of HLA-G was found in vesicles accumulated in spent media from day 3 to day 5 of development compared to those isolated from the earlier stage. Uptake of dye-labeled embryo-derived EVs by human primary endometrial epithelial and stromal cells was also demonstrated with a fluorescence intensity signal significantly higher for cells treated with vesicles derived from blastocysts. Based on these findings, EV exchange may be suggested as an emerging way of communication at the maternal-fetal interface

    When Less Is More: Specific Capture and Analysis of Tumor Exosomes in Plasma Increases the Sensitivity of Liquid Biopsy for Comprehensive Detection of Multiple Androgen Receptor Phenotypes in Advanced Prostate Cancer Patients

    No full text
    We evaluated the advantages and the reliability of novel protocols for the enrichment of tumor extracellular vesicles (EVs), enabling a blood-based test for the noninvasive parallel profiling of multiple androgen receptor (AR) gene alterations. Three clinically relevant AR variants related to response/resistance to standard-of-care treatments (AR-V7 transcript, AR T878A point mutation and AR gene amplification) were evaluated by digital PCR in 15 samples from patients affected by Castration-Resistant Prostate Cancer (CRPC). Plasma was processed to obtain circulating RNA and DNA using protocols based on tumor EVs enrichment through immuno-affinity and peptide-affinity compared to generic extraction kits. Our results showed that immuno-affinity enrichment prior to RNA extraction clearly outperforms the generic isolation method in the detection of AR-V7, also allowing for a distinction between responder (R) and non-responder (NR) patients. The T878A mutation was detected, overall, in nine out of 15 samples and no approach alone was able to reveal mutations in all harboring samples, showing that the employed methods complement each other. AR amplification was detected in the majority of CRPC samples analysed using either cell-free DNA (cfDNA) or exosome isolation kits (80%). We demonstrated that selective isolation of a subset of circulating exosomes enriched for tumor origin, rather than analysis of total plasma exosomes, or total plasma nucleic acids, increases sensitivity and specificity for the detection of specific alterations
    corecore