35 research outputs found

    NiTi shape-memory transformations: minimum-energy pathways between austenite, martensites, and kinetically-limited intermediate states

    Get PDF
    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite ("glassy" B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, but unstable B2. These high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.Comment: 4 pages, 4 figure

    Peculiarities of the Phase Transformation Dynamics in Bulk FeRh Based Alloys from Magnetic and Structural Measurements

    Get PDF
    We analyze coexistence of antiferromagnetic and ferromagnetic phases in bulk iron-rhodium and its alloys with palladium, Fe50,4Rh49,6, Fe49,7Rh47,4Pd2,9 and Fe48,3Rh46,8Pd4,9, using neutron diffraction, magnetization and scanning Hall probe imaging. Temperature dependencies of the lattice parameters, AFM and FM phase weight fractions, and Fe magnetic moment values were obtained on cooling and heating across the AFM-FM transition. Substantial thermomagnetic hysteresis for the phases’ weight fractions and a relatively narrow one for the unit cell volume has been observed on cooling-heating. A clear dependence of hysteretic behavior on Pd concentration has been traced. Additional direct magnetic measurements of the spatial distribution of the phase transition are acquired using scanning Hall probe microscopy, which reveals the length scale of the phase coexistence and the spatial progression of the transition in the presence of external magnetic field. Also, the magnetic phase diagram has been constructed for a series of Pd-doped FeRh alloys. © 2020 Elsevier B.V.EL acknowledges funding from the UK EPSRC. LFC acknowledges funding from the EPSRC and InnovateUK: Project number: 105541. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. This work was partly supported by the state assignment of the Ministry of Science and Higher Education (themes “Flux” No. AAAA-A18-118020190112-8 and “Alloys” № AAAA-A19-119070890020-3)
    corecore