
Atomic motion in solids with dimpled potentials

N. A. Zarkevich1, ∗

1The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020 USA
(Dated: September 25, 2018)

Polymorphic solids of the same chemical composition can have different atomic structures; in each
polymorph atoms vibrate around a local potential energy minimum (LPEM). If transformations to
other structures have sufficiently high enthalpy barriers, then each polymorph is either stable or
metastable; it is stationary and does not spontaneously change with time. But what happens,
if those barriers are low? As examples, we consider NiTi shape memory alloy exhibiting a large
elastocaloric effect, and selected elemental solids. We suggest a model for dynamically polymorphic
solids, where multiple LPEMs are visited by ergodic motion of a single atom. We predict that upon
cooling a dynamically polymorphic phase should undergo a symmetry-breaking first-order phase
transition, accompanied by a finite change of the lattice entropy. We discuss 3 methods used to
calculate phonons in solids with non-harmonic dimpled atomic potentials, and compare theoretical
predictions to experiment.

PACS numbers: 81.30.Kf, 81.05.Bx, 64.70.kd, 63.20.Ry
Keywords: Dynamic polymorphism, solid-solid phase transitions, lattice stability, phonons.

I. INTRODUCTION

A non-harmonic atomic potential presents a challenge
for those who use a harmonic or quasiharmonic approxi-
mation for addressing solids. A dimpled potential is not
harmonic, can cause a lattice instability, is not straight-
forward to deal with, but is very common in practical
materials [1] with more than one local potential energy
minimum (LPEM), covered by ergodic atomic motion.
There are well-developed methods for a harmonic poten-
tial, where parabola has a single minimum. However, a
dimpled potential dramatically differs from a harmonic
one. Quite often, the high-symmetry atomic position,
which used to be an energy minimum in a harmonic po-
tential, happen to be a local energy maximum or a saddle
in a dimpled potential, with several LPEMs surrounding
this position. How to calculate phonons and describe
atomic motion in such non-harmonic potentials? We will
consider 3 algorithms, obtain ab initio results, and com-
pare them to experiment.

Crystal is a solid, in which atoms are arranged in a
definite pattern and whose surface regularity reflects its
internal symmetry [2]. A crystal can be described as
a Bravais lattice – an infinite periodic array of discrete
points [3]. The crystalline periodic arrangement of atoms
is manifested by an x-ray [4] and neutron diffraction crys-
tallography. According to Laue [5], the Bragg spots [4]
are observed due to constructive interference, which oc-
curs if the change in the wave vector belongs to the re-
ciprocal lattice. Nevertheless, in some crystals the ideal
atomic positions on a Bravais lattice are unstable [1].

Comparing an experimentally observed diffraction pat-
tern with the one predicted for a particular Bravais lat-
tice, crystallographers suggest a crystal structure [4].
However, a correspondence between crystal structures
and diffraction patterns is many-to-one: more than one
crystal structure can produce the same pattern, while
each particular fully ordered crystal produces a unique

(one and only one) diffraction pattern. To add confu-
sion, a partially disordered crystal can produce a similar
pattern. In addition to thermal atomic motion, materials
can have athermal atomic disorder, which can be chem-
ical or displacive, local (due to lattice defects) or non-
local. An ordered crystal and a solid with a substantial
displacive disorder can produce similar diffraction pat-
terns with the same positions but different broadening of
peaks. One example is NiTi austenite with the assumed
unstable B2 structure and multiple stable representative
structures [6, 7]. Lattice instabilities were also found
in antiferromagnetic (AFM) phase of B2 FeRh [8] and
in body-centered cubic (bcc) phases of Ti, Zr, Hf, and
Li [1, 9, 10]. A crystal-like diffraction pattern can be
produced by solids, which are not periodic (for example,
quasicrystals) [11].

Atoms in solids are trapped in deep potential energy
(PE) basins (Fig. 1), separated by PE barriers EB , which
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FIG. 1. (color online) A 1-dimensional periodic potential with
the lattice constant a, having (a) single LPEM (harmonic
below EH), and (b) multiple (two) LPEMs per basin, where
at kT � EL each atom is displaced (orange arrows) from the
high-symmetry unstable position (open circles) to one of the
nearby stable LPEMs (filled circles).
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are high compared to kT , where T is temperature and k
is the Boltzmann constant. We define NL to be the num-
ber of the local potential energy minima per PE basin.
We refer to a crystal with NL = 1 as conventional; a
1-dimensional (1D) example is in Fig. 1(a).

A solid with a dimpled potential can have multiple
LPEMs and hence NL > 1 [e.g., NL = 2 in Fig. 1(b)].
In general, potential energy is a functional of atomic po-
sitions, and a path from one LPEM to another can be a
collective atomic motion.

Each LPEM is a stable or metastable arrangement of
atoms. Multiple stable chemical structures are known
as isomers in molecules and polymorphs in solids. If the
enthalpy barriers between polymorphs are high compared
to kT , then each polymorph is stationary and does not
spontaneously transform to other polymorphs. However,
if the barriers between LPEMs are low compared to kT ,
then thermal atomic motion covers several LPEMs; this
state of matter can be called “dynamically polymorphic”,
and this phenomenon – a “dynamic polymorphism.” (A
similar semantics is used in computer programming to
refer to the runtime polymorphism).

Below we discuss atomic motion in a dimpled potential
(section II) and compare phonon methods (section III).
As a model, we consider a periodic potential with deep
PE basins; only one atom occupies each basin (we as-
sume that a strong interatomic repuslion at short dis-
tances makes presence of another atom in the same basin
energetically unfavorable). In our examples (section IV)
we consider one [Figs. 1(a) and 2] or more [from two in
Fig. 1(b) to 48 in Fig. 7(c,d)] LPEMs per basin. Prop-
erties of the simplified models and real materials are dis-
cussed in sections II, IV, V and summarized in section VI.
Computational details are provided in Appendix A.

II. DIMPLED ATOMIC POTENTIAL

A. Model

Let us consider a solid with several (NL > 1) LPEMs
per PE basin. In a single PE basin, a set of LPEMs con-
nected by minimal enthalpy paths (MEPs) forms a net-
work, which might include (Figs. 1(b) and 3) or exclude
(Figs. 4, 6 and 7) the high-symmetry crystallographic po-
sition at the basin center (x = 0, with energy EL above
LPEM). Let the enthalpy barriers along MEPs be El (rel-
ative to LPEM); for simplicity we assume that enthalpies
of all LPEMs are the same and the barriers have the same
height (one can index individual enthalpies and general-
ize our consideration to less symmetric cases). At a high
enough temperature (kT ≥ El), an atom can move from
one LPEM to another within the same basin.

We assume that the enthalpy barrier El is not higher
than the PE EL at the high-symmetry point x = 0, and
both enthalpies are low compared to the barrier EB be-

tween the PE basins, see Fig. 1(b):

0 ≤ El ≤ EL � EB . (1)

In our examples, El = EL = 0 for the harmonic potential
with NL = 1 in Figs. 1(a) and 2; El ≡ EL > 0 for
the double-well potential with NL = 2 in Figs. 1(b) and
3; 0 = El < EL for the muffin-tin sombrero potential
with NL = ∞ in Figs. 4 and 5; 0 < El � EL for the
2D and 3D corrugated sombrero potentials with a finite
countable NL > 1 in Figs. 6 and 7.

In general, one of the LPEMs can be at x = 0 (for ex-
ample, the only LPEM in a harmonic potential in Fig. 2).
Here we focus on a less trivial atomic motion with an in-
stability at x = 0; the MEP between adjacent stable
LPEMs can either include or bypass the high-symmetry
point x = 0. The double-well basin in Fig. 3 is a 1D ex-
ample of a potential with NL = 2 [Fig. 1(b)], where the
path from (−xL,−EL) to (+xL,−EL) unavoidably goes
through the local PE maximum at (0, 0), thus El ≡ EL.
In higher dimensions D>1, a MEP can go around this lo-
cal maximum (examples are 2D and 3D corrugated som-
breros in Figs. 6 and 7).

Assuming that each LPEM is a point (and not a line,
like in the muffin-tin sombrero potential in Fig. 4), one
can define a harmonic limit Eh < El around it, such that
atomic vibration around a single LPEM is harmonic at
sufficiently small displacements and potential is approx-
imately parabolic at E ≤ Eh.

B. Thermal atomic motion

Atomic motion in a solid with NL > 1 depends on T
and can cover vicinity of one or several LPEMs.

• kT ≤ Eh � El: harmonic vibration around a sin-
gle local potential energy minimum. The small
atomic displacement method can be used to cal-
culate phonons at a LPEM, see Section III.

• Eh < kT < El: anharmonic vibration around a
single LPEM.

• kT ∼ El: a phase transition happens.

• El ≤ kT < EL: atomic motion covers several
LPEMs in the same PE basin. If such LPEMs are
distributed symmetrically around x = 0, then the
time-averaged atomic position is zero: 〈x〉 = 0.

• EL ≤ kT < EB : atomic motion covers a signif-
icant part of the PE basin, including the center
(x=0) and multiple LPEMs. If LPEMs can be in-
terpreted as a negligible roughness (EL � kT ) at
the bottom of a nearly harmonic potential, then a
finite atomic displacement method can be used to
calculate phonons around x = 0, see Section III.
Snapshots of thermal atomic motion in molecular
dynamics at fixed T are finite collective atomic dis-
placements in a solid phase.
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• kT ≥ EB : atomic motion is no longer restricted by
a PE basin; the solid has melted or sublimated.

A dynamically polymorphic solid phase exists at tem-
peratures El ≤ kT < EB . Upon cooling, it transforms
to a lower-symmetry phase below

Tc ≈ El/k. (2)

We expect this transformation to be of the first order,
because it is accompanied by a discontinuous change of
the lattice entropy ∆SL. Under certain conditions, a
change of the total entropy is responsible for an isentropic
temperature change (caloric effect). In alloys like NiTi,
this effect is quite large.

C. Representative structures

At kT � El, atomic arrangement is stationary: each
atom vibrates around a single LPEM. If at each PE basin
an atom randomly chooses one of the LPEMs [e.g., either
right or left LPEM in each double-well basin in Fig. 1(b)],
then this atomic structure is aperiodic, but its diffraction
pattern coincides with that produced by a crystal with
partially occupied LPEMs in periodic PE basins. Even
if there is no atomic periodicity, it is possible to consider
a “large enough” representative periodic unit cell, which
correctly represents energy, phonon spectrum, average
LPEM occupations, and other physical properties.

Let us consider a 1D example in Fig. 1(b). A periodic
unit cell with even number of atoms, where each (right or
left) LPEM is occupied by half of the atoms, provides the
same energy per atom (at T = 0), the same occupancy
(ci = 1/2) of each (right or left) LPEM, and a vibrational
spectrum similar to that of the whole aperiodic solid.
Thus, for the purpose of computing its physical proper-
ties, a solid can be approximated by a periodic atomic
configuration with a representative structure. Any par-
ticular representative unit cell is not unique, there are
many others. All representative structures have similar
properties, which approximate those of the solid.

D. Displacive pattern

Displacements of atoms from the high-symmetry posi-
tions (PE basin centers at x = 0) create a pattern, which
can be either stationary (at kT < El) or dynamic (at
El ≤ kT < EB), and has a characteristic length [12],
imported from cosmology [13] to condensed matter [14].

At kT ≥ El, motion of each atom covers several
LPEMs and the displacive pattern is dynamic. A broad-
ened distribution of the interatomic distances differs from
that in a conventional crystal (e.g., NiTi austenite [6] has
such broadening due to athermal atomic displacements).
Although there is no periodicity of the instantly occupied
LPEMs, a diffraction pattern produced by such a solid
reminds that of a conventional crystal (with peaks at the
same positions, but not of the same width).

E. Effect of interatomic interactions

Interactions between atoms can change relative ener-
gies and positions of LPEMs. A shift of energies can force
atoms to choose one particular LPEM at each basin, thus
forming a fully ordered crystal (an example is the γ-Se,
hP3, A8, P3121 structure of Te and Se-Te alloys, which
consists of 3 triangular lattices stacked along z [15], and
can be considered as a distortion of a simple cubic lat-
tice [16]). A shift of the equilibrium atomic positions
affects a distribution of the interatomic distances and a
diffraction pattern. Nevertheless, atomic displacements
and interatomic distances in a dynamically polymorphic
phase will differ from thermal ones in a harmonic crystal.

III. PHONON CALCULATIONS

A. Small atomic displacement method

The quasi-harmonic approximation (QHA) is often
used to calculate phonons in conventional crystals [17].
Atoms are assumed to be at stable equilibrium at 0K.
Small atomic displacements u from this stable equilib-
rium result in the increase in the potential energy E,
which is quantified in QHA using a Taylor expansion:

E = E0 +
1

2

∑
ij,αβ

uα(ri)D
αβ
ij uβ(rj) +O(u3m). (3)

Here Dαβ
ij is the force-constant matrix:

Dαβ
ij = ∂2E/∂uα(ri)∂uβ(rj). (4)

The latin indices i, j enumerate atoms, while the greek
letters α, β label directions.

The higher-order terms beyond the second order can be
neglected, if the amplitudes of all atomic displacements
are small: |u| ≤ uh, where uh is the harmonic limit.
The instant atomic forces for the near-equilibrium atomic
configuration τn are

Fαi (τn) =
∑
β,j

Dαβ
ij u

j
β(τn) (5)

Given a sufficient number N of independent atomic con-
figurations τn (n = 1...N) with known atomic displace-
ments uj and forces Fi, one can solve a system of linear
equations (5) and find matrix Dij , which can be used to
find the phonon spectrum and density of states (DOS).
The minimal number N of independent atomic configura-
tions [and linearly independent equations (5)] is equal to
the number ND of independent components of Dij . The
system (5) might be over-determined, if N > ND. For ei-
ther well-determined or over-determined system (5), the
effective force-constant matrix De

ij can be found by mini-
mizing the sum of the differences between the actual and
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predicted forces [18]:

∆F ≡
∑
n,i

|Fi(τn)−
∑
j

De
iju

j(τn)| → min (6)

Within the small atomic displacement method, expan-
sion is around a LPEM, and displacement is assumed to
be within a harmonic limit (e.g., |u| ≤ xH in Fig. 2). Any
displacement |u| = |x− 0| ≤ xH (including infinitesimal)
provides the same vibrational frequency for the harmonic
potential in Fig. 2, where F (x)/x = dF/dx = K is a
constant at −xH < x < xH . To emphasize that har-
monicity is just an approximation, we exaggerated the
harmonic region in Fig. 2, where the force F (x) = Kx is
precisely linear and the energy E(x) = 1

2Kx
2 is parabolic

at x < xH .
The result of the QHA is correct, if each displacement

u = x − xL from a stable equilibrium at xL is indeed
within the harmonic limit at |u| < uh, and the potential
energy E(u) is approximately quadratic at E < Eh ≡
E(xL ± uh). To get a correct result, one must know
the stable equilibrium coordinates xL at each occupied
LPEM (Figs. 1(b) and 3).

B. Finite atomic displacement method

Alternatively, the harmonic potential in Fig. 2 can
be comprehended as a limit of the double-well poten-
tial in Fig. 3 with xL → 0, so that x0 = xL = 0 and
E(xL) = E(0) = 0. If multiple LPEMs can be inter-
preted as a negligibly small roughness at the bottom of
a nearly harmonic potential (approximately parabolic at
−xH < x < xH , with xL → 0, i.e., xL � xH), then
one can approximately calculate phonons using the finite
displacement method (example is bcc Li, section IV F),
which avoids unstable phonons, if F (x)/x > 0; this hap-
pens when atomic displacements u = x − 0 are larger
than the distance between unstable (at zero) and stable
(at xL) atomic positions, see Fig. 3].

In the finite atomic displacement method, expansion
(3) can be around the high-symmetry crystallographic
position at x = 0, which might (Fig. 2) or might not
(Fig. 3) be a LPEM. If the finite displacements u ≡ x−0
are sufficiently large, i.e., xL < |u| ≤ xH and none of
them is in the region −xL < x < xL, where a destabiliz-
ing force pushes an atom away from unstable equilibrium
at x = 0 (see Fig. 3), then there are no imaginary frequen-
cies in the calculated phonon spectrum. Because this
method deliberately avoids the region −xL < x < xL,
unstable phonons are overlooked [19].

C. Finite displacements at fixed T

Molecular dynamics (MD) provides another way to
generate atomic configurations τ(t). The snapshots of
thermal atomic motion in MD at fixed T are collective
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FIG. 2. (color online) Potential energy E and force F =dE/dx
versus displacement x (in arbitrary units) for a 1D crystal
with one LPEM per basin [Fig. 1(a)], harmonic at E<EH .
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FIG. 3. (color online) Potential energy E [same as in Fig.
1(b)] and force F = dE/dx versus displacement x for a po-
tential with several (two) LPEMs per potential energy basin.
Highlighted are forces with F/x< 0 at −xL <x<xL, which
push an atom away from the unstable equilibrium at x=0. At
displacement x0 (filled circle), effective harmonic linear force
and parabolic potential are shown (dashed orange lines).

finite displacements. MD sampling gives a set of atomic
positions uj(tn) and forces Fi(tn) for a large number N
of time steps tn. ThermoPhonon code [18] solves the
over-determined set of equations (5) and finds the effec-
tive force constant matrix De

ij (6), which is then used to
construct the phonon spectrum.

IV. EXAMPLES

A. Harmonic potential

Any smooth curve is approximately parabolic near its
local minimum; it can be expanded in a Taylor series
around it: E(x) ≈ E(0) + 1

2Kx
2 + O(x3). Hence, a

vibration with a small enough amplitude around a LPEM
is expected to be harmonic (see Figs. 1(a) and 2 and
discussion in section III A). Average amplitude of atomic
vibrations depends on T, and so does the harmonicity.

For the potential in Fig. 2 [same as Fig. 1(a)], one can
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categorize temperature dependence of atomic motion.

kT ≤ EH : harmonic vibration;

EH < kT < EB : anharmonic vibration;

Tmelt ∼ EB/k: phase transformation [20] from a
solid to a liquid or a gas at kT ≥ EB .

In one dimension, a 1×1 matrix Dαβ (4) has only one
element D11 =K. For the harmonic potential

E(x) =
1

2
Kx2, (7)

the force obeys the Hooke’s law

dE

dx
≡ F (x) = Kx; (8)

it is linear vs. x at any “small” displacement |x| < xH .
Motion of a mass M in such potential is harmonic and
has a frequency

ω =
√
K/M, (9)

which does not depend on x at |x| < xH . The Thermo-
Phonon method [18] at kT < EH and a displacement
method at |x| < xH provide the same frequency (9).

B. Double-well potential

A dimpled potential in Figs. 1(b) and 3 is a less trivial
example with two LPEMs per basin. It has a crystal-
lographic high-symmetry point at x = 0, but E(0) = 0
is a local energy maximum, with two minima nearby at
E(±xL) = −EL. The point (x,E) = (0, 0) is the energy
barrier El = EL between those two LPEMs.

At kT � El ≤ EL, one can apply the small-
displacement method (section III A) to one of the repre-
sentative stable structures (section II C) to find phonons.
Alternatively, at EL � kT < EB , if multiple LPEMs
could be interpreted as a negligibly small roughness at
the bottom of an otherwise nearly harmonic potential
(similar to that in Fig. 2), then one could use a finite
displacement method to approximate phonons at the un-
stable atomic position at x = 0, see section III (B,C).

The 1D matrix De in eq. 6 has dimension 1 × 1 (i.e.,
α = β = 1), and the value of its single element is Ke. For
the double-well potential in Fig. 3, the “effective” spring
stiffness Ke = F (x)/x depends on displacement x. A
negative Ke for a small displacement x < xL results in
imaginary frequency ωe =

√
Ke/M , which characterizes

an unstable phonon mode. The displacement xL with
F (xL) = 0 gives Ke = 0 and ωe = 0. A large displace-
ment x > xL leads to a positive Ke and a stable effective
phonon frequency ωe > 0, which depends on displace-
ment x. In other words, the frequency ωe of vibrations

0 xL

0

-EL

EB

-xL

FIG. 4. (color online) The 2D sombrero-like model potential.
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(a)

(b)

FIG. 5. (color online) 2D square lattice with periodic
sombrero-like potential, see Fig. 4. (a) Blue circle is at PE
minimum; atoms (black dots) are at arbitrary positions on
this circle at low T (kT � EL). (b) Energy profile along the
cross section [horizontal red dashed line in (a)] is the same as
Fig. 1(b).

around an unstable equilibrium at x = 0 is not well-
defined. However, a choice of a finite xT ≥ x0, related to
thermal motion of atoms at temperature T , such that

E(xT ) =
1

2
kT, (10)

can result in a phonon spectrum, which compares well
with experiment at the same T . In eq. 10 we assumed
EL � kT and neglected the dimples in Fig. 3.

The ThermoPhonon method [18] at small kT < EL
returns Ke < 0 and an unstable (imaginary) phonon
frequency for the expansion (3) around unstable equi-
librium at x = 0. With increasing T , the amplitudes of
the negative Ke and of the unstable imaginary phonon
frequency ωe =

√
Ke/M become smaller, until at a suffi-

ciently large kT ≥ EL the effective Ke becomes positive.
If Ke ≥ 0, than ωe ≥ 0 is real and the effective phonon
mode looks stable. Temperature T uniquely determines
the phonon frequency ωe(T ) within this method [18].
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FIG. 6. (color online) The corrugated sombrero potentials
with 4 (a) and 8 (b) equidistant LPEMs, approximated by
Gaussians.

C. A muffin-tin sombrero potential

To illustrate that a MEP between LPEMs can bypass
a high-symmetry crystallographic point, we show a 2D
sombrero potential in Fig. 4. This muffin-tin type model
potential is symmetric around x = 0. In the radial co-
ordinates (r, φ), it has a local energy maximum at r = 0
and an extended energy minimum at the radius r = xL
(at any angle φ); the MEP between LPEMs is a circle
r = xL. The energy barrier El is zero for the muffin-
tin sombrero potential (Fig. 4), but not for a corrugated
sombrero (Fig. 6). A muffin-tin type potential can form
a lattice, see Fig. 5. At a low temperature kT < EL,
atoms (black dots in Fig. 5) vibrate near the PE minima
at r = xL (blue circles in Fig. 5), while averaged over the
angles φ atomic positions happen to be at r = 0. By con-
struction, the central cross-section of the muffin-tin som-
brero potential in Fig. 4 is identical to the double-well
potential in Fig. 3, and the cross-section of this periodi-
cally repeated potential in Fig. 5 is identical to Fig. 1(b).

D. Corrugated sombrero potentials

Due to interatomic interactions (discussed in sec-
tion II E), an actual atomic potential differs from an
idealized muffin-tin sombrero model potential, which ap-
proximates a corrugated sombrero with El � EL in the
limit El → 0. A corrugated sombrero potential has multi-
ple local LPEMs linked by a MEP forming a closed path,
with small but finite barriers 0 ≤ El ≤ EL, see Fig. 6.

At kT ≥ El, atomic motion covers multiple LPEMs in
a corrugated sombrero potential. However, at kT < El
an atom is trapped in the neighborhood of a single
LPEM. Thus, there is a symmetry-breaking first-oder
phase transition at Tc, estimated by eq. 2.

In Fig. 7, MEPs (lines) between LPEMs (dots) form
a loop in 2D and a network in 3D. Similarity between
the muffin-tin and corrugated sombreros improves with
increasing number of LPEMs, see Fig. 6. A cubic austen-
ite with an unstable high-symmetry atomic position, such
as NiTi, can have 48 symmetry-equivalent stable collec-
tive atomic displacements (LPEMs). The model som-
brero potentials and a qualitative distribution of LPEMs

(a) (b)

(c)

(d)

FIG. 7. (color online) A network of the symmetry-equivalent
displacements (black balls) from the center (small red dot at
x = 0) in (a) 2D square basin of a square lattice with 4-fold
rotational symmetry; (b) 2D hexagonal basin of a triangular
lattice with 3-fold rotational symmetry (shaded is its inver-
sion); (c) 3D cubic lattice [shown is only the central part, not
the whole cubic basin] and (d) its [111] projection, with shad-
ing below [111] plane through 3 corners of the cube. With a
LPEM (large black dot) at each shown displacement and a lo-
cal PE maximum at the center (small red dot), the light-blue
lines represent the MEP (which is not necessarily straight)
between pairs of LPEMs.

linked by chains of MEPs in Fig. 7 help to understand
atomic motion with large athermal displacements in real
materials, such as NiTi B2-type austenite.

Many solids with lattice instabilities have atomic po-
tentials, which remind a corrugated sombrero. Examples
include the austenitic phase of NiTi and the bcc phases
of Ti, Zr, Hf, and Li.

E. NiTi austenite

We find that the austenitic phase of NiTi shape mem-
ory alloy above Tc = 313 K has multiple LPEMs, sepa-
rated by low energy barriers El � kT ∼ EL. While B2
structure is unstable [7], a representative stable struc-
ture [6] can be used for an approximate description of
this solid.

To obtain a representative structure, we tried several
unit cells of various shapes, with various number of atoms
(Fig. 8). Computational details are in [6, 7] and in Ap-
pendix A. Each supercell was heated to 800 K for 100 fs,
cooled to 0 K in 800 fs (using ab initio molecular dynam-
ics), and than fully relaxed to the nearest local poten-
tial energy minimum (using the conjugate-gradient al-
gorithm). Among the results, we selected the structure
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with the lowest energy; the smallest one had 54 atoms per
representative supercell. We checked that repeating the
whole procedure with a twice larger, 108-atom unit cell
(doubled along one of the 3 lattice constants) results in
a different structure with the same energy per atom, see
Fig. 8(d). We verified that this hexagonal 54-atom struc-
ture is indeed a local potential energy minimum with a
stable phonon spectrum (Fig. 2b in [6]), and we found
that its phonon DOS compares well to that obtained
from the neutron scattering experiment [21]. Again, this
representative hexagonal 54-atom structure is just an ap-
proximate representation of NiTi austenite.

Interatomic interactions can affect not only energy, but
also atomic positions. Atomic displacements from the
unstable ideal B2 positions are shown in Fig. 6 in [6]
and in Fig. 8 (c,d). The largest one (0.66 Å) is 25% of
the nearest neighbor (NN) distance and 22% of the B2
lattice constant (3 Å); it is above the Lindemann criterion
for melting [22]. Nickel atomic radius r(Ni) = 1.24 Å is
smaller than r(Ti) = 1.47 Å. An average displacements
of Ni from B2 is larger than that of Ti (Fig. 6 in [6]).
The athermal NN-pair distribution function (Fig. 5 in
[6]) is skewed and has a substantial width (it spreads
from 2.42 to 2.88 Å, and from 2.48 to 2.65 Å at half-
maximum), in contrast to a δ-function at 2.60 Å for an
ideal B2 single crystal. An average next-nearest neighbor
(NNN) distance for Ni-Ni is smaller than that for Ti-Ti,
while NNN Ni-Ni and Ti-Ti distances are the same in
ideal B2. There are more short Ni-Ni bonds than short
Ti-Ti bonds, see Fig. 8 (c,d). The smallest NNN distance
(for both Ni-Ni and Ti-Ti) in the austenite is shorter
than the NN (Ni-Ti) distance in ideal B2 crystal. The

(a) (b)

(c) (d)

FIG. 8. (a) The ideal B2 structure and (b) its [111] pro-
jection, with Ni (yellow) and Ti (blue) atoms; length of NN
(Ni-Ti) bonds is 2.6 Å, NNN (Ni-Ni or Ti-Ti) bonds are 3.0 Å.
Stable atomic positions in cubic B2 [111] projection are shown
in representative supercells (bounded by thin black line), con-
taining (c) 54 atoms and (d) 108 atoms. The NNN Ni-Ni and
Ti-Ti bonds shorter than 2.75 Å are shown.
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FIG. 9. NiTi potential energy vs. collective atomic displace-
ment (which changes linearly from zero at unstable B2 to ±xL
at a LPEM) for a MEP from B2 to a representative austenitic
structure (LPEM, thick black solid line), from B2 to BCO
ground state (via B19’ or R’ structures, thin dashed lines),
and for a transformation between two orientations of BCO
martensite (via B19, thick green dashes line). Thin black line
shows the low enthalpy barriers around an austenitic LPEM.

NNN bonds form chains, which are linear for Ti-Ti and
branching for Ni-Ni, see Fig. 8 (c,d). A representative
LPEM has a smaller energy than B2 due to optimization
of interatomic distances and bond angles.

The cross section of the potential energy E vs. collec-
tive atomic displacement x from B2 [Fig. 8(a,b)] at x=0
to a representative 54-atom NiTi structure [Fig. 8(c)] at
x = ±xL and beyond is a double-well E(x) curve [see
the shaded part of Fig. 9], which reminds Fig. 3. B2 also
transforms without a barriers to the BCO ground state
(see Fig. 4 in [7]). The barrier (B19 in Fig. 9) for the
BCO-to-BCO transformation is well below B2, see Fig. 3
in [7] and Table I.

In general, atoms are displaced from B2 along direc-
tions, which are not high-symmetry ones, and a cubic
structure has 48 isometries, which form the Oh octa-
hedral symmetry group, isomorphic to S4 × C2. Thus,
for each atom there are at least 48 LPEMs around the
energy maximum at ideal B2 [Fig. 7(c)]. The barri-
ers El ∼ 1 meV/atom between those LPEMs are quite
low: they are comparable to the barriers between the
NiTi austenite (middle of thin black line in Fig. 9) and
the BCO ground state, which vary from only 1 to 5
meV/atom, depending on the transformation path [23].

Stoichiometric NiTi austenite exists at temperatures
between 313 K and 1293 K: it transforms to the low-T
B19’ martensite below Tc = 313 K (40 C, kTc = 27 meV)
[24, 25], segregates above Ts = 1293 K (1020 C, kTs =
111 meV), and melts at Tmelt = 1586 K (1314 C, kTmelt =
137 meV). The LPEM representing the NiTi austenitic
structure is∼ 30 meV/atom above the ground-state BCO
and∼ 20 meV/atom below unstable B2. At Tc < T < Ts,
El � kT , while EL ∼ kT . Thus, atoms in the NiTi
austenite not only vibrate around a particular LPEM,
but also move from one LPEM to another, forming a
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FIG. 10. Phonon DOS in NiTi unstable B2 at 0 K (small dis-
placements) and 1586 K (ThermoPhonon method [18]), and in
a stable representative austenitic NiTi structure (LPEM) [6],
compared to that from neutron scattering experiment [21].

dynamically changing pattern.
In spite of atomic motion across multiple LPEMs, the

small displacement method applied to a stable represen-
tative austenitic NiTi structure [6] provides phonon DOS,
which resembles experimental one [21], see Fig. 10. From
the other hand, increasingly large atomic displacements
from B2 structure suppress the relative weight of unstable
phonons. One can compare results of 3 phonon methods
(small displacement at B2, finite displacement at B2, and
small displacement at a representative LPEM) with the

NiTi ϑ E−EBCO E−ELPEM

meV K meV K

BCO 107◦ 0 0 −29 −343

B19′ 98◦ 8 93 −21 −250

B19 90◦ 15 179 −14 −164

R 13 153 −16 −190

B2 (EL) 48 557 +20 215

El +1 10

LPEM 29 343 0 0

Tc 27 313

Ts 111 1293

Tmelt 137 1586

TABLE I. Calculated energies E [meV/atom] and E/k [K] of
NiTi structures relative to its BCO ground state and LPEM
[6]. BCO can be viewed as monoclinic B19’ with angle
ϑ = 107◦. Energies of B19’ at ϑ from 107◦ to 98◦ (observed
in experiment [26]) vary from 0 to 8 meV/atom [7, 27, 28],
and increase to 15.4 meV/atom for B19 at ϑ = 90◦. B19
is the energy barrier for BCO-to-BCO MEP [7]. The bar-
rier El for LPEM-to-BCO [23] and LPEM-to-LPEM MEP is
∼ 1 meV/atom (10 K) above LPEM. Measured temperatures
of martensitic transformation Tc, segregation Ts, and melting
Tmelt [24, 25].

assessment based on the neutron diffraction experiment
[21] in Fig. 10.

F. Lithium

The bcc Li transforms to the ground-state close-packed
rhombohedral 9R structure below Tc = 70 K [9] and melts
at Tmelt = 453.65 K. Its bcc structure is unstable. At
Tc � T < Tmelt, including room T, atomic motion cov-
ers the whole central part of a PE basin, including the bcc
high-symmetry point at x = 0 and the nearby LPEMs.
At such conditions one can use a finite atomic displace-
ment method to calculate phonons.

We compare various methods from section III in
Fig. 11. Because the bcc Li structure is unstable,
the small displacement method returns unstable phonon
modes around N. As atomic displacements become larger,
the relative weight of those unstable phonons reduces,
until they completely disappear for a sufficiently large
displacement (0.1 Å).

The molecular dynamics (MD) at a sufficiently high
temperature T � Tc provides predominantly large collec-
tive atomic displacements and a stable phonon spectrum
[29]. The periodic boundary conditions in the 4×4×4 su-
percell [29], which is incommensurate with the 9R ground
state, might also suppress a phonon instability. Using
MD in a smaller 3× 3× 3 supercell, we find a very minor
phonon instability at the ΓN branch, which reminds the
result of a medium atomic displacement (0.05 Å).

Overall, all 3 methods (based on the small displace-
ments, finite displacements, and MD at a finite T) give
phonon spectra, which are comparable everywhere, ex-
cept for the ΓN branch. A phonon instability from the
small displacement method is not a mistake, but a prop-
erty of the unstable bcc Li structure. Suppression of

Γ H P Γ N P
-2

0

2

4

6

8

10

Ph
on

on
 F

re
qu

en
cy

  (
TH
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300 K
0.10Å
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FIG. 11. Phonons in bcc Li, calculated using small (0.01 Å),
medium (0.05 Å), and large (0.1 Å) atomic displacements
and molecular dynamics (MD) at 300K [29]. Phonon fre-
quencies from small and medium displacement methods were
rescaled to match the large displacement method at P. Un-
stable phonon modes are shown as negative frequencies.
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those unstable phonons by using finite atomic displace-
ments is just a computational trick.

G. Group 4 bcc metals: Ti, Zr, and Hf

Materials with a lattice instability are quite common.
In particular, bcc Ti, Zr, and Hf are unstable [19, 30, 31].
They transform from the high-T bcc β-phase to the low-
T hcp α-phase at cooling, and to the ω-phase at pressure.
Using the SS-NEB method, we find that both β −α (see
Fig. 12) and β − ω transformations are barrierless for all
3 metals, in agreement with the previous calculations for
Ti [30]. Thus, ideal bcc is either a local energy maximum
or a saddle point in these metals.

Experiments pointed at the soft mode at q = 2
3 (111),

responsible for β−ω instability, in Zr [32] and Ti [10], and
at the softening of the (110) phonon branch with tem-
perature lowering [33]; the damped transverse phonons
at q = 1

2 (110) facilitate the β−α transition.
The small atomic displacement method predicts

phonon instabilities [30] around q = 2
3 (111) [34], as well

as in the (110) T1 phonon branch (in bcc Zr [35]). The
finite displacement method provided stable phonons in
bcc Ti, Zr, and Hf [36]; similar results were obtained us-
ing a self-consistent method with large enough atomic
displacements at elevated temperature (see Fig. 1 in [19],
reproduced in [37] and [31]). From MD at 1300K in a
128-atom 4×4×4 cubic supercell (incommensurate with
the ω-phase), a stable phonon dispersion for bcc Zr was
constructed [29].

The calculated interatomic force in bcc Zr for displace-
ments δ from bcc at 0 to ω at xω was found to be negative
(i.e., unstable) for small δ < 0.25xω, but not for larger
δ [38]. Our Fig. 3 explains how the finite displacement
method provides stable phonons in such cases.

Using MD above Tc, we find that an average PE of
atoms at T of experimental bcc existence is well above
that of an ideal bcc structure in Ti (Table II), Zr, and
Hf. Thus, atomic motion covers the whole central part of
a PE basin, including its center and all nearby LPEMs,
which look like dimples, responsible for the lattice in-

Ti E − Ebcc

meV K

α hcp −130 −1510

ω −128 −1485

β bcc 0 0

MD(1273K) +115 1335

T = 1273 K +110 1273

Tc 100 1155

Tmelt 167 1943

TABLE II. Calculated energies [meV/atom, Kelvin] relative
to the unstable bcc Ti. Measures temperatures of the marten-
sitic α–β transformation (Tc) and melting (Tmelt).

hcp                              Path                              bcc
0

50
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E
  

(m
e
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−
1
)

Ti
Zr
Hf

FIG. 12. The transformation path between hcp and bcc
phases does not have an enthalpy barrier in Ti, Zr, and Hf
metals. Their high-T bcc phase is stabilized by entropy.

stability. These PE dimples are shallow compared to
kT , and this justifies the use of the finite displacement
method for these bcc metals.

H. Stable bcc metals: Fe, Nb

Our story would be incomplete without mentioning a
few conventional crystals. Some bcc crystals are stable.
For example, magnetic iron has a bcc ground state [39]
with a stable phonon spectrum (Fig. 1 in [40], Fig. 4 in
[41]); its transformation to hcp has a barrier [42]. The
calculated phonons in bcc Nb (Fig. 2 in [43], Fig. 3 in [41])
are also stable and reasonably agree with experiment [44].

I. Tellurium

The Te A8, γ-Se, hP3, P3121 trigonal structure [45]
can be interpreted as a hexagonal deformation of the
simple cubic (SC) structure [16]. The SC structure is
unstable and transforms to A8 without a PE barrier.
The barriers El between various orientations of A8 are so
high, that atoms vibrate around a single LPEM, which
is a stable A8 crystal, observed in experiment [46].

Tellurium is a provocative example, which can be in-
terpreted either as a stable Te A8 structure with a sin-
gle LPEM (see section IV A), or as a highly unstable SC
structure with multiple LPEMs (section IV B), separated
by high barriers El (kT < El < EL, section II).

V. DISCUSSION

In general, a dynamically polymorphic solid has a
higher lattice entropy than a conventional crystal. En-
tropy is proportional to the logarithm of the number of
states, and vibration around a single LPEM has fewer
states than atomic motion across multiple LPEMs (see
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Figs. 1(b) and 7). Many solid phases are stabilized by
entropy at a finite T, and dynamic polymorphism is very
common in those high-temperature solid phases.

Examples of dynamically polymorphic phases include
solids with lattice instabilities (such as bcc Li, B2 AFM
FeRh, and NiTi austenite), crystals with a mobile inter-
stitial dopant (some of metal hydrides and boron steels),
polymers and organic molecules with rotating molecular
units, and numerous solid phases, dynamically stabilized
by entropy at a finite T.

VI. SUMMARY

Solids with dimpled atomic potentials are quite ubiq-
uitous among natural and industrial materials. Some of
them have multiple local minima of the atomic poten-
tial energy. They include many high-temperature solid
phases, which have a higher lattice entropy than con-
ventional crystals. Examples include many anharmonic
crystals with lattice instabilities, such as bcc Li, Ti, Zr,
and Hf elemental solids, B2-type antiferromagnetic FeRh
and NiTi austenite. To understand properties of these
materials, we have constructed simplified models. We
compared three methods for calculating phonons, applied
them to conventional harmonic crystals and solids with a
lattice instability, and discussed various types of atomic
motion. We predicted a first-order phase transition in
cooled dynamically polymorphic phases, and provided an
estimate of the transition temperature.
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Appendix A: Computational details

DFT calculations were performed using the plane-wave
pseudopotential-based VASP code [47, 48]. We used the
generalized gradient approximation (GGA) [49], and a
projected augmented wave (PAW) basis [50], with con-
vergence obtained by a second Broydens method [51]. We
used the high accuracy [47, 48] with default values of the
plane-wave energy cutoff and augmentation charge cut-
off (e.g., 337 eV and 544.6 eV for NiTi [6, 7]). The total
energies and forces were calculated using k-meshes with
at least 50 k-points per Å−1.

The solid-state nudged elastic band (SS-NEB) method
[52] with up to two climbing images [23] was combined
with DFT [47, 48] to address transformations [7]. To ob-
tain result in Fig. 9, we linearly extrapolated atomic coor-
dinates from ideal B2 to the austenitic structure [6] and
beyond in a representative 54-atom supercell (Fig. 8c).
We remind, that a linear extrapolation is not necessarily
the MEP, thus there could be a fictitious barrier in Fig. 9,
if the MEP was twisted [23].

The group 4 metals (Ti, Zr, Hf) were addressed using
DFT+U [53] with (U−J) = 2.2 eV [54]. The endpoint bcc
and hcp structures were fully relaxed. Next, we used the
SS-NEB method [52] to find the minimal enthalpy path.
High precision of DFT calculations [47, 48] was achieved
with the plane-wave energy (augmentation charge) cutoff
of 223.0 (328.9) eV for Ti, 193.3 (243.2) eV for Zr, and
275.5 (335.1) eV for Hf.

Li and LiH were addressed by combining VASP [47,
48], ThermoPhonon [18], and Phonopy [55] codes. The
small displacement method was applied using the Phon
code [56].
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