29 research outputs found

    Longitudinal thalamic white and gray matter changes associated with visual hallucinations in Parkinson’s disease

    Get PDF
    Objective: Visual hallucinations are common in Parkinson’s disease (PD) and associated with worse outcomes. Large-scale network imbalance is seen in PD-associated hallucinations, but mechanisms remain unclear. As the thalamus is critical in controlling cortical networks, structural thalamic changes could underlie network dysfunction in PD hallucinations. Methods: We used whole-brain fixel-based analysis and cortical thickness measures to examine longitudinal white and grey matter changes in 76 patients with PD (15 hallucinators, 61 non-hallucinators) and 26 controls at baseline, and after 18 months. We compared white matter and cortical thickness, adjusting for age, gender, time-between-scans and intracranial volume. To assess thalamic changes, we extracted volumes for 50 thalamic subnuclei (25 each hemisphere) and mean fibre crosssection (FC) for white matter tracts originating in each subnucleus and examined longitudinal change in PDhallucinators versus non-hallucinators. Results: PD hallucinators showed white matter changes within the corpus callosum at baseline and extensive posterior tract involvement over time. Less extensive cortical thickness changes were only seen after followup. White matter connections from the right medial mediodorsal magnocellular thalamic nucleus showed reduced FC in PD hallucinators at baseline followed by volume reductions longitudinally. After follow-up, almost all thalamic subnuclei showed tract losses in PD hallucinators compared with non-hallucinators. Interpretation: PD hallucinators show white matter loss particularly in posterior connections and in thalamic nuclei, over time with relatively preserved cortical thickness. The right medial mediodorsal thalamic nucleus shows both connectivity and volume loss in PD hallucinations. Our findings provide mechanistic insights into the drivers of network imbalance in PD hallucinations and potential therapeutic targets

    Carotid artery stenosis, an underestimated cause of stroke recurrence in patients with ischaemic monocular visual loss

    Get PDF
    INTRODUCTION Isolated monocular ischaemic events are thought to be low risk for stroke recurrence. In the presence of carotid stenosis however, the risks should not be treated similarly and surgical intervention should be considered at an early stage. The aim of this study was to determine the vascular risk profile and stroke recurrence in patients with ischaemic monocular visual loss. METHODS AND METHODS Consecutive records for all patients with monocular ischaemia were reviewed from January 2014 to October 2016. Stroke, transient ischaemic attack or monocular ischaemia recurrence within 90 days were recorded. Carotid stenosis was assessed with duplex ultrasound, computed tomography or magnetic resonance angiography. RESULTS In total, 400 patients presented with monocular ischaemia; 391 had carotid imaging (97.8%). Causality was symptomatic carotid stenosis ≥ 50% in 53 (13.6%), including carotid stenosis ≥ 70% in 31 (7.9%). Patients with permanent visual loss (n = 131) were more likely to have significant stenosis compared with patients with transient visual loss (n = 260), 19.8% compared with 10.4% (P = 0.012). Recurrent stroke, transient ischaemic attack or monocular ischaemia within 90 days after presentation occurred in three patients (5.7%) in the carotid stenosis group, compared to three (0.9%) who did not have stenosis (P = 0.035). Age, male sex and hypertension were associated with carotid stenosis but hypercholesterolaemia, diabetes and smoking were not. CONCLUSIONS Carotid stenosis ≥ 50% is present in patients with ocular ischaemia in approximately 20% of those with persistent visual loss and in 10% with transient visual loss. Those with carotid stenosis have a higher risk of stroke recurrence and should be considered urgent surgical intervention as other forms of stroke

    Fibre-specific white matter reductions in Parkinson’s hallucinations and visual dysfunction

    Get PDF
    Objective: To investigate the microstructural and macrostructural white matter changes that accompany visual hallucinations and low visual performance in Parkinson’s disease, a risk factor for Parkinson’s dementia. Methods: We performed fixel-based analysis, a novel technique that provides metrics of specific fibre-bundle populations within a voxel (or fixel). Diffusion MRI data was acquired from patients with Parkinson’s disease (n=105, of which 34 low visual performers and 19 hallucinators) and age-matched controls (n=35). We used whole brain fixel-based analysis to compare micro-structural differences in fibre density (FD), macro-structural differences in fibre bundle cross-section (FC) and the combined fibre density and cross-section metric (FDC) across all white matter fixels. We then performed a tract of interest analysis comparing the most sensitive FDC metric across 11 tracts within the visual system. Results: Patients with Parkinson’s disease hallucinations exhibited macrostructural changes (reduced FC) within the splenium of the corpus callosum and the left posterior thalamic radiation compared to patients without hallucinations. Whilst there were no significant changes in FD, we found large reductions in the combined FDC metric in Parkinson’s hallucinators within the splenium (>50% reduction compared to non-hallucinators). Patients with Parkinson’s disease and low visual performance showed widespread microstructural and macrostructural changes within the genu and splenium of the corpus callosum, bilateral posterior thalamic radiations and the left inferior fronto-occipital fasciculus. Conclusions: We demonstrate specific white matter tract degeneration affecting posterior thalamic tracts in patients with Parkinson’s disease with hallucinations and low visual performance, providing direct mechanistic support for attentional models of visual hallucinations

    Organisational and neuromodulatory underpinnings of structural-functional connectivity decoupling in patients with Parkinson's disease

    Get PDF
    Parkinson's dementia is characterised by changes in perception and thought, and preceded by visual dysfunction, making this a useful surrogate for dementia risk. Structural and functional connectivity changes are seen in humans with Parkinson's disease, but the organisational principles are not known. We used resting-state fMRI and diffusion-weighted imaging to examine changes in structural-functional connectivity coupling in patients with Parkinson's disease, and those at risk of dementia. We identified two organisational gradients to structural-functional connectivity decoupling: anterior-to-posterior and unimodal-to-transmodal, with stronger structural-functional connectivity coupling in anterior, unimodal areas and weakened towards posterior, transmodal regions. Next, we related spatial patterns of decoupling to expression of neurotransmitter receptors. We found that dopaminergic and serotonergic transmission relates to decoupling in Parkinson's overall, but instead, serotonergic, cholinergic and noradrenergic transmission relates to decoupling in patients with visual dysfunction. Our findings provide a framework to explain the specific disorders of consciousness in Parkinson's dementia, and the neurotransmitter systems that underlie these

    Visual dysfunction predicts cognitive impairment and white matter degeneration in Parkinson's disease

    Get PDF
    Visual dysfunction predicts dementia in Parkinsons disease (PD), but whether this translates to structural change is not known. We aimed to identify longitudinal white matter changes in patients with Parkinsons disease and low visual function and also in those who developed mild cognitive impairment (MCI). We used fixel-based analysis to examine longitudinal white matter change in PD. Diffusion MRI and clinical assessments were performed in 77 patients at baseline (22 low visual function /55 intact vision; and 13 MCI, 13 MCI converters /51 normal cognition) and 25 controls and again after 18 months. We compared micro-structural changes in fibre density, macro-structural changes in fibre bundle cross-section (FC) and combined fibre density and cross-section across white matter, adjusting for age, gender and intracranial volume. Patients with Parkinsons and visual dysfunction showed worse cognitive performance at follow up and were more likely to develop MCI compared with those with normal vision (p=0.008). Parkinsons with poor visual function showed diffuse micro-structural and macro-structural changes at baseline, whereas those with MCI showed fewer baseline changes. At follow-up, Parkinsons with low visual function showed widespread macrostructural changes, involving the fronto-occipital fasciculi, external capsules, and middle cerebellar peduncles bilaterally. No longitudinal change was seen in baseline MCI or in MCI converters, even when the two groups were combined. Parkinsons patients with poor visual function show increased white matter damage over time, providing further evidence for visual function as a marker of imminent cognitive decline

    Thalamic white matter macrostructure and subnuclei volumes in Parkinson’s disease depression

    Get PDF
    Depression is a common non-motor feature of Parkinson’s disease (PD) which confers significant morbidity and is challenging to treat. The thalamus is a key component in the basal ganglia-thalamocortical network critical to the pathogenesis of PD and depression but the precise thalamic subnuclei involved in PD depression have not been identified. We performed structural and diffusion-weighted imaging (DWI) on 76 participants with PD to evaluate the relationship between PD depression and grey and white matter thalamic subnuclear changes. We used a thalamic segmentation method to divide the thalamus into its 50 constituent subnuclei (25 each hemisphere). Fixel-based analysis was used to calculate mean fibre cross-section (FC) for white matter tracts connected to each subnucleus. We assessed volume and FC at baseline and 14–20 months follow-up. A generalised linear mixed model was used to evaluate the relationship between depression, subnuclei volume and mean FC for each thalamic subnucleus. We found that depression scores in PD were associated with lower right pulvinar anterior (PuA) subnucleus volume. Antidepressant use was associated with higher right PuA volume suggesting a possible protective effect of treatment. After follow-up, depression scores were associated with reduced white matter tract macrostructure across almost all tracts connected to thalamic subnuclei. In conclusion, our work implicates the right PuA as a relevant neural structure in PD depression and future work should evaluate its potential as a therapeutic target for PD depression

    Differences in network controllability and regional gene expression underlie visual hallucinations in Parkinson’s disease

    Get PDF
    Visual hallucinations are common in Parkinson’s disease and are associated with poorer prognosis. Imaging studies show white matter loss and functional connectivity changes with Parkinson’s visual hallucinations, but the biological factors underlying selective vulnerability of affected parts of the brain network are unknown. Recent models for Parkinson’s disease hallucinations suggest they arise due to a shift in the relative effects of different networks. Understanding how structural connectivity affects the interplay between networks will provide important mechanistic insights. To address this, we investigated the structural connectivity changes that accompany visual hallucinations in Parkinson’s disease and the organizational and gene expression characteristics of the preferentially affected areas of the network. We performed diffusion-weighted imaging in 100 patients with Parkinson’s disease (81 without hallucinations, 19 with visual hallucinations) and 34 healthy age-matched controls. We used network-based statistics to identify changes in structural connectivity in Parkinson’s disease patients with hallucinations and performed an analysis of controllability, an emerging technique that allows quantification of the influence a brain region has across the rest of the network. Using these techniques, we identified a subnetwork of reduced connectivity in Parkinson’s disease hallucinations. We then used the Allen Institute for Brain Sciences human transcriptome atlas to identify regional gene expression patterns associated with affected areas of the network. Within this network, Parkinson’s disease patients with hallucinations showed reduced controllability (less influence over other brain regions), than Parkinson’s disease patients without hallucinations and controls. This subnetwork appears to be critical for overall brain integration, as even in controls, nodes with high controllability were more likely to be within the subnetwork. Gene expression analysis of gene modules related to the affected subnetwork revealed that down-weighted genes were most significantly enriched in genes related to mRNA and chromosome metabolic processes (with enrichment in oligodendrocytes) and upweighted genes to protein localization (with enrichment in neuronal cells). Our findings provide insights into how hallucinations are generated, with breakdown of a key structural subnetwork that exerts control across distributed brain regions. Expression of genes related to mRNA metabolism and membrane localization may be implicated, providing potential therapeutic targets

    Exploring new business models for monetising digitisation beyond image licensing to promote adoption of OpenGLAM

    Get PDF
    Ever since the Rijksmuseum pioneered the OpenGLAM movement in 2011, releasing to the public domain images of artworks in its collection, several other museums have followed its lead, including the Metropolitan Museum of Art and the Finnish National Gallery. Although studies have demonstrated that OpenGLAM provides numerous benefits to museums, ranging from the dissemination of their collections to increased sponsorship opportunities, the movement’s adoption remains limited. One of the main barriers for joining OpenGLAM is the “fear of losing image licensing revenue”, as participant museums have yet to invent new business models to recover lost image fees. Current efforts to address this challenge include Rijksmuseum’s Rijksstudio, a Print-on-Demand service for creating and purchasing products featuring the museum’s artworks. However, Rijksstudio is very similar to existing Print-on-Demand solutions for museums, which have barely evolved over the last decade and, subsequently, it shares their limitations (e.g. offering wall art products only). Α radically different approach that integrates Print-on-Demand automation with emerging technologies (i.e. image recognition and progressive web applications) to generate revenue from digitisation is the Infinite Museum Store (IMS). In [citation] we presented the technical aspects and innovation features of IMS, as well as the results of a pilot study held at the State Museum of Contemporary Art (SMCA) in Thessaloniki, Greece, which demonstrated its significant potential for generating revenue from digitised collections. This paper examines IMS from a business model perspective. It focuses on aspects such as viability, maintenance and long-term sustainability, and investigates ways technical innovation can be applied and utilised as a business model that generates revenue from digitisation, helping promote wider adoption of OpenGLAM

    Quantitative MRI maps of human neocortex explored using cell type-specific gene expression analysis

    Get PDF
    Quantitative magnetic resonance imaging (qMRI) allows extraction of reproducible and robust parameter maps. However, the connection to underlying biological substrates remains murky, especially in the complex, densely packed cortex. We investigated associations in human neocortex between qMRI parameters and neocortical cell types by comparing the spatial distribution of the qMRI parameters longitudinal relaxation rate (R1{R_{1}}), effective transverse relaxation rate (R2{R_{2}}^{\ast }), and magnetization transfer saturation (MTsat) to gene expression from the Allen Human Brain Atlas, then combining this with lists of genes enriched in specific cell types found in the human brain. As qMRI parameters are magnetic field strength-dependent, the analysis was performed on MRI data at 3T and 7T. All qMRI parameters significantly covaried with genes enriched in GABA- and glutamatergic neurons, i.e. they were associated with cytoarchitecture. The qMRI parameters also significantly covaried with the distribution of genes enriched in astrocytes (R2{R_{2}}^{\ast } at 3T, R1{R_{1}} at 7T), endothelial cells (R1{R_{1}} and MTsat at 3T), microglia (R1{R_{1}} and MTsat at 3T, R1{R_{1}} at 7T), and oligodendrocytes and oligodendrocyte precursor cells (R1{R_{1}} at 7T). These results advance the potential use of qMRI parameters as biomarkers for specific cell types
    corecore