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ABSTRACT
Objective Visual hallucinations are common in 
Parkinson’s disease (PD) and associated with worse 
outcomes. Large- scale network imbalance is seen in 
PD- associated hallucinations, but mechanisms remain 
unclear. As the thalamus is critical in controlling cortical 
networks, structural thalamic changes could underlie 
network dysfunction in PD hallucinations.
Methods We used whole- brain fixel- based analysis 
and cortical thickness measures to examine longitudinal 
white and grey matter changes in 76 patients with PD 
(15 hallucinators, 61 non- hallucinators) and 26 controls 
at baseline, and after 18 months. We compared white 
matter and cortical thickness, adjusting for age, gender, 
time- between- scans and intracranial volume. To assess 
thalamic changes, we extracted volumes for 50 thalamic 
subnuclei (25 each hemisphere) and mean fibre cross- 
section (FC) for white matter tracts originating in each 
subnucleus and examined longitudinal change in PD- 
hallucinators versus non- hallucinators.
Results PD hallucinators showed white matter changes 
within the corpus callosum at baseline and extensive 
posterior tract involvement over time. Less extensive 
cortical thickness changes were only seen after follow- 
up. White matter connections from the right medial 
mediodorsal magnocellular thalamic nucleus showed 
reduced FC in PD hallucinators at baseline followed 
by volume reductions longitudinally. After follow- up, 
almost all thalamic subnuclei showed tract losses in PD 
hallucinators compared with non- hallucinators.
Interpretation PD hallucinators show white matter 
loss particularly in posterior connections and in thalamic 
nuclei, over time with relatively preserved cortical 
thickness. The right medial mediodorsal thalamic 
nucleus shows both connectivity and volume loss in 
PD hallucinations. Our findings provide mechanistic 
insights into the drivers of network imbalance in PD 
hallucinations and potential therapeutic targets.

INTRODUCTION
Visual hallucinations (VH) are common in Parkin-
son’s disease (PD), can cause significant distress to 
affected individuals and their families and are asso-
ciated with worse outcomes:1 patients with PD and 
VH have worse quality of life,2 increased mortality,3 
higher rates of subsequent dementia4 and are more 
likely to require nursing home care.5

PD- associated hallucinations are accompanied by 
macroscale brain network imbalance with aberrant 

activation of the default mode network and reduced 
activity of other networks such as the dorsal atten-
tional network.6 Network changes are thought to 
underlie the impaired accumulation of sensory 
evidence7 and the overweighting of previously held 
beliefs (at the expense of sensory information)8 
seen in PD hallucinators. Widespread changes in 
brain structure are seen in PD hallucinations with 
loss of grey matter volume across regions including 
the precuneus, cingulate and superior and inferior 
frontal gyri9 and white matter structure within 
posterior tracts and at whole- network level.10 11 
However, our understanding of the drivers of these 
large- scale network changes remains unclear.

We recently showed that structural connectivity 
loss may preferentially affect areas that normally 
exert high levels of influence over the whole- 
brain network and are particularly important for 
switching the brain between states.12 The thal-
amus, a connection- rich diencephalic hub critical 
for cortical sensory filtering,13 14 has been recently 
proposed as a potential key driver for unbalanced 
network activation.15 16 Thalamic hypometabolism 
and atrophy are seen in patients with PD and hallu-
cinations17 and is also present in frontotemporal 
dementia associated with C9orf72 mutations where 
hallucinations are reported.18 Reduced thalamic 
connectivity with the prefrontal cortex (PFC) is 
also seen in relation to hallucinations in psychosis.19 
However, the thalamus is a heterogeneous structure 
comprised of distinct nuclei with different cortical 
projections and functions.13 Specific thalamic 
subnuclei may be implicated in Parkinson’s halluci-
nations and can now be robustly segmented using a 
recently described probabilistic atlas.20

White matter changes, detected using diffusion- 
weighted MRI, may be more sensitive to early 
degenerative processes in PD than grey matter 
loss, as they reflect changes in axons rather than 
neuronal loss.21 White matter changes may occur 
at an earlier stage in PD:22 in whole- brain studies of 
PD and cognition, white matter loss is seen before 
significant grey matter atrophy.23 24

Here, we attempt to clarify the longitudinal grey 
and white matter changes underlying VH in PD and 
assess the relative involvement of different thalamic 
nuclei. We examined whole- brain cortical thickness 
and white matter integrity using fixel- based anal-
ysis, a sensitive and fibre- specific framework,25 
at baseline and after 18 months in patients with 
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PD with (PD- VH) and without hallucinations (PD non- VH). 
Additionally, we assessed changes in grey matter volume of 50 
thalamic subnuclei and macrostructural white matter integrity of 
their respective corticothalamic projections at baseline and longi-
tudinally. We hypothesised that corticothalamic connection loss 
would precede volume loss in PD- VH and that subregions of the 
thalamus would show differential vulnerability to degeneration.

METHODS
Participants
Participants were recruited to the National Hospital, Queen 
Square and underwent clinical assessments and brain imaging at 
baseline and after 18 months (visit 2). Only participants who 
had structural and diffusion- weighted imaging satisfying prede-
termined quality control criteria at both visits were included (see 
online supplemental methods for details on excluded partic-
ipants). 101 participants were included: 76 patients with PD 
and 26 age- matched controls (from spouses and volunteer data-
bases). All patients with PD satisfied the Queen Square Brain 
Bank criteria.26 The study was approved by the Queen Square 
ethics committee (15/LO/00476) and all participants provided 
written informed consent prior to taking part.

Participants with PD were classified as PD with VH (PD- VH, 
n=15) if they scored more than 1 for question 2 of the Unified 
Parkinson’s Disease Rating Scale (UPDRS): ‘Over the past week 
have you seen, heard, smelled or felt things that were not really 
there?’ in either study visit; all participants reported halluci-
nations in the visual domain. All other participants were clas-
sified as PD non- VH (n=61). Further details on the frequency 
and severity of VH were collected for all participants using the 
University of Miami Parkinson’s Disease Hallucinations Ques-
tionnaire (UM- PDHQ).27

All participants underwent assessments of general cognition 
using the Mini- Mental State Examination (MMSE) and Montreal 
Cognitive Assessment (MoCA). Comprehensive domain- specific 
cognitive assessments were also performed using two tests per 
cognitive domain (see online supplemental methods for details). 
Levodopa dose equivalence scores were calculated for PD 
participants.28

MRI data acquisition
All MRI data were acquired on the same 3T Siemens Magnetom 
Prisma scanner (Siemens) with a 64- channel head coil. Magne-
tisation prepared rapid acquisition gradient echo was acquired 
using the following parameters: 1×1×1 mm voxel, TE=3.34 
ms, TR=2530 ms, flip angle=7°. Diffusion- weighted imaging 
(DWI) was acquired using these parameters: b=50 s/mm2/17 
directions, b=300 s/mm2/8 directions, b=1000 s/mm2/64 direc-
tions, b=2000 s/mm2/64 directions, 2×2×2 mm isotropic 
voxels, Echo time (TE)=3260 ms, Repetition time (TR)=58 ms, 
72 slices, 2 mm thickness, acceleration factor=2.

Grey matter imaging processing
FreeSurfer V.6.0 was used with default parameters for cross- 
sectional processing, then images were automatically processed 
with the longitudinal stream.29 Specifically, an unbiased within- 
subject template space and image were created using inverse 
consistent registration. Subsequent processing steps were 
initialised with common information from the within- subject 
template, increasing accuracy and statistical power.29 After longi-
tudinal processing, surface reconstructions of the template and 
of images at T1 and T2 were inspected, corrected and repro-
cessed where necessary.

In addition, thalamic subnuclei volumes were derived from 
each longitudinally processed Freesurfer reconstruction using 
a recently described Bayesian segmentation method based on 
a probabilistic histology- derived atlas.20 Volumes were derived 
for 25 subnuclei for each thalamus: anteroventral, laterodorsal, 
lateral posterior, ventral anterior, ventral anterior magnocel-
lular, ventral lateral anterior, ventral lateral posterior, ventral 
posterolateral, ventromedial (VM), central medial (CeM), 
central lateral, paracentral (Pc), Centromedian, parafascicular, 
paratenial, Reuniens medial ventral, mediodorsal medial magno-
cellular (MDm), mediodorsal medial parvocellular, lateral genic-
ulate (LGN), medial geniculate, limitans, pulvinar anterior, 
pulvinar medial, pulvinar lateral and pulvinar inferior.

DWI processing
DWI images passing quality control underwent denoising,30 
removal of ringing artefacts,31 eddy- current and motion correc-
tion32 and bias- field correction.33 Spatial resolution was then up 
sampled to 1.3 mm3 voxel size as recommended for fixel- based 
analysis and intensity normalisation performed across subjects. 
For each participant, fibre- orientation distributions (FODs) were 
then computed using multishell three- tissue constrained spher-
ical deconvolution with the group- average response function for 
each tissue type (grey matter, white matter, cerebrospinal fluid 
(CSF)).34

To allow longitudinal comparison, we created a group- 
averaged FOD template at baseline from 30 randomly selected 
subjects (20 PD, 10 controls). Each participant’s FOD was regis-
tered to the template35 and fixel- based metrics derived: (a) Fibre 
density (FD): a metric of microstructural changes within tracts, 
(b) Fibre cross- section (FC): a relative measure of macrostruc-
tural changes and (c) Combined measure of fibre density and 
cross- section (FDC): a combined metric calculated as FD multi-
plied by FC for each fixel and representing overall white matter 
integrity.21 All preprocessing and analyses of DWI data were 
performed in MRtrix V.3.0.

To specifically assess the integrity of thalamic connections, we 
also generated specific tracts per hemisphere from each of the 
50 thalamic subnuclei. Each subnucleus was registered to the 
population template using linear registration with NiftyReg.36 
Subsequently, a tractogram for each thalamic subnucleus was 
generated using probabilistic tractography on the population 
template.37 Streamlines were initiated in each thalamic subnu-
cleus to the ipsilateral hemisphere, with the rest of the thalamus 
excluded to minimise overlap between tracts. This resulted in 
a single tract- of- interest from each thalamic subnucleus to the 
cortex. Mean FC was then calculated across each tract- of- 
interest per participant; FC was chosen as prior works showed it 
is the most sensitive fibre- specific metric in PD.10 38

Statistical analysis
Demographics
Group differences in demographics and clinical characteristics 
were assessed using independent t- samples and analysis of vari-
ance (ANOVA)s for normally distributed continuous (post- hoc 
Tukey), Mann- Whitney and Kruskall- Wallis for non- normally 
distributed (post- hoc Dunn) and χ2 for categorical variables; 
statistical significance p<0.05. Shapiro- Wilk was used to assess 
normality.

Whole-brain fixel-based analysis
Non- parametric permutation testing and connectivity- based fixel 
enhancement (CFE)25 was used to identify significant differences 
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in fixel- based metrics. We generated a tractogram with 20 million 
streamlines using whole- brain probabilistic tractography on the 
population FOD template; this was filtered to 2 million stream-
lines using SIFT (spherical deconvolution informed filtering of 
tractograms).39 CFE was performed on the resulting streamlines 
using the default smoothing parameters (C=0.5, E=2, H=3), 
with 5000 permutations and family- wise error correction (FWE) 
for multiple comparisons. FWE- corrected p<0.05 with cluster- 
extent- based threshold of 10 voxels was considered statistically 
significant. We used the John Hopkins University atlas to iden-
tify white matter fixels across the whole brain for subsequent 
statistical comparisons, in keeping with previous studies.10 38 40 
Whole white- matter comparisons were performed at baseline 
between PD- VH and PD non- VH, using age, gender and intra-
cranial volume as covariates. To implement a longitudinal design 
matrix, we subtracted each baseline image from the visit 2 image. 
Whole white- matter statistical analyses were then performed on 
these difference images with baseline age, gender, intracranial 
volume and time between scans as covariates.

Whole-brain cortical thickness analysis
To determine differences in cortical thickness trajectories over 
time between PD- VH and PD non- VH, we used Linear Mixed 
Effect models in MATLAB (The MathWorks) designed for 
longitudinal FreeSurfer data.41 A spatiotemporal novel mass- 
univariate analysis was performed with cortical thickness as the 
dependent variable and a random intercept defining subject as a 
random factor. Additional regressors included the time- between- 
scans in years (baseline imaging marked as 0), age at baseline, 
gender, group (PD- VH vs PD non- VH), and group- by- time inter-
action (variable of interest). Significance maps for group- by- time 
interactions were corrected for multiple comparisons using a 
false discovery rate (FDR) correction combined over the left and 
right hemispheres and saved for later visualisation in freeview.

Thalamic subnucleus and tract-of-interest analysis
Thalamic volumes and mean tract FC at baseline were compared 
between PD- VH and PD non- VH using a linear mixed model 
with age, gender and intracranial volumes as covariates. To 
assess differences in longitudinal rate of change for each thalamic 
subnucleus and each tract- of- interest, respectively, we used a 
linear mixed model with group- by- time interaction as the vari-
able of interest and group (PD- VH vs PD non- VH), age, gender, 
and time- between- scans as regressors and a random intercept. 
Correction for multiple comparisons was performed using 
FDR correction across 50 subnuclei/tracts. Correlational anal-
yses of subnucleus volumes or mean tract FC with UM- PDHQ 
scores (indicating hallucination severity) was performed using 
Spearman correlation coefficient.

To ensure that anxiety and depression did not drive the 
effect seen in PD- VH, we also performed correlation analyses 
(Spearman correlation coefficient) of subnucleus volumes and 
tract FC with Hospital Anxiety and Depression Scale (HADS) 
scores. Statistical analyses were performed in Python V.3 using 
Jupyter Lab V.1.2.6.

RESULTS
A total of 101 participants were included; 76 patients with PD, 
of whom 15 PD- VH and 61 PD non- VH, and 26 controls. Demo-
graphics and results of clinical assessments at baseline are shown 
in table 1. The groups were well matched in age, gender, years 
in education. PD- VH and PD non- VH did not differ in terms of 
baseline cognitive performance, except lower scores in Stroop 

(both colour and interference) in PD- VH. PD- VH had higher 
prevalence of other non- motor symptoms with higher anxiety 
and depression scores and higher total UPDRS scores (U=289, 
p=0.014) but did not differ in motor severity, disease duration or 
levodopa- equivalent daily dose (table 1). Time interval between 
the two scans (baseline and visit 2) was 1.17 to 1.67 years (mean 
1.28, SD 0.08) with no significant between- group differences.

During follow- up, PD- VH showed greater worsening perfor-
mance than PD non- VH in measures of general cognition 
(MOCA t=2.930, p=0.005; MMSE Mann- Whitney U=317.5, 
p=0.030). Table 2 shows the longitudinal changes in general 
cognition and motor symptoms in PD participants (for details 
on longitudinal cognitive performance, see online supplemental 
table 1).

Cortical grey matter is relatively preserved in PD with VH 
despite widespread white matter macrostructural changes
At baseline, no statistically significant differences in cortical 
thickness were seen between PD with and without hallucinations. 
Cortical thickness for both PD- VH and PD non- VH decreased 
over 18 months follow- up, with significantly higher reductions 
longitudinally in PD- VH compared with PD non- VH with clus-
ters including the left precuneus, bilateral anterior cingulate, 
bilateral precentral and postcentral gyrus, bilateral superior 
frontal and anterior cingulate gyrus, bilateral insula, right supra-
marginal gyrus, right superior temporal gyrus and right lateral 
occipital gyrus (figure 1A).

For white macro- and micro- structure, PD- VH also showed 
significant changes compared with PD without hallucinations, 
longitudinally (figure 1B), and some changes were already 
present at baseline, as we have previously shown.10 Specifically, 
at baseline, PD- VH showed macrostructural changes (FC reduc-
tions) and microstructural changes (FD reductions) within the 
splenium of the corpus callosum and the left posterior thalamic 
radiation. Reductions were also seen in the combined FDC 
metric across the same regions, particularly within the splenium 
which showed over 30% FDC reduction in PD- VH compared 
with PD non- VH (online supplemental figure 1).

Longitudinally, there were additional extensive macrostruc-
tural changes (FC reductions) in PD- VH compared with PD 
non- VH within the splenium, bilateral posterior thalamic radia-
tions, bilateral posterior internal capsules, bilateral tapetum, left 
inferior fronto- occipital fasciculus, and left superior longitudinal 
fasciculus (figure 1B). No differences in the longitudinal reduc-
tion of FD or FDC were seen between groups.

Specific volume loss of the right mediodorsal medial thalamic 
nucleus is seen in PD-VH longitudinally and is preceded by 
respective white matter connection loss
Thalamic volumes (either whole thalamic or subnucleus volume) 
at baseline showed no significant difference between PD- VH and 
PD non- VH, correcting for age, gender and total intracranial 
volume, after correction for multiple comparisons. However, 
when assessing differences in longitudinal thalamic subnuclei 
volumes, PD- VH showed significantly higher reductions in 
volume of the right medial mediodorsal magnocellular nucleus 
(MDm: t=−3.018, FDR- corrected p value, q<0.001) and the 
left Pc nucleus (Pc: t=−3.490, q<0.001) compared with PD 
non- VH (figure 2, table 3). Thalamic subnucleus volume loss 
was significantly correlated with hallucination severity (mean 
UM- PDHQ score across both visits) for both the right MDm 
(Ρ=−0.362, p=0.001) and the left Pc nucleus (Ρ=−0.339, 
p=0.003).
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White matter tracts- of- interest from thalamic subnuclei to the 
ipsilateral cortex showed significant reductions in mean FC in 
PD- VH compared with PD non- VH already at baseline; specif-
ically in the right mediodorsal medial magnocellular nucleus 
(MDm: t=−0.037, FDR- corrected q=0.05) and the right 
centromedial nucleus (CeM: t=−0.0157, q<0.001) (figure 3A). 
Longitudinally, tracts- of- interest from 44 out of 50 thalamic 
subnuclei showed significant reductions in mean FC in PD- VH 
compared with PD non- VH, adjusting for age, gender, total 
intracranial volume and time between scans and FDR corrected 

across 50 tracts (figure 3B). The Pc and paratenial nuclei bilat-
erally did not show significant differences in PD- VH longitudi-
nally (FDR- corrected q>0.05) and bilaterally the ventromedial 
nuclei showed significantly less volume loss in PD- VH (right 
VM: t=2.964, q=0.006, left VM: t=2.952, q=0.006). All other 
thalamic tracts- of- interest (88%) showed greater volume loss in 
PD- VH compared with PD non- VH; longitudinal reduction in 
mean FC was significantly correlated with hallucination severity 
(Ρ=−0.212, q<0.001). Details on the longitudinal changes in 
thalamic tract mean FC are seen in online supplemental table 2.

Table 1 Demographics and results of clinical assessments at baseline

Characteristic Controls n=26 PD non- VH n=61 PD- VH n=15 P value

Age (years) 67.4 (8.2) 64.6 (8.1) 64.5 (8.0) 0.308

Male (%) 12 (46.2) 36 (59.0) 6 (40%) 0.302

Years of education 17.9 (2.2) 17.3 (2.6) 16.9 (3.8) 0.686

Vision

  Contrast sensitivity (Pelli Robson)§ 1.8 (0.2) 1.8 (0.2) 1.7 (0.2) 0.136

  Acuity (LogMar)§ −0.08 (0.2) −0.07 (0.2) −0.08 (0.1) 0.136

  Colour vision (D15)§ 1.2 (1.0) 1.2 (1.0) 1.6 (1.8) 0.927

General cognition

  MOCA 29 (1.2) 28.0 (2.3) 27.6 (1.8) 0.050‡

  MMSE 29.2 (0.9) 29.0 (1.2) 28.9 (1.3) 0.847

Mood

  HADS anxiety 3.5 (3.5) 5.1 (3.5) 8.0 (4.2) 0.002*†

  HADS depression 1.2 (1.5) 3.7 (3.1) 4.8 (3.3) <0.001†‡

Detailed neuropsychology

  Attention

Digit span forwards 9.3 (2.1) 9.1 (2.0) 10 (2.0) 0.412

Digit span backwards 6.9 (2.4) 7.3 (2.2) 7.6 (2.4) 0.748

Stroop: colour (sec) 31.9 (7.6) 32.6 (6.4) 38.3 (8.5) 0.012*‡

Executive function

Stroop: interference (sec) 56.2 (14.3) 40.3 (20.1) 72.9 (26.6) 0.029*‡

Category fluency 21.9 (4.8) 22.1 (6.0) 20.1 (4.0) 0.502

  Memory

Word recognition task 24.5 (1.0) 24.3 (2.3) 23.8 (1.2) 0.077

Logical memory (delayed) 12.8 (3.5) 13.3 (4.6) 13.5 (4.5) 0.928

  Language

Graded naming task 23.6 (1.0) 24.3 (2.5) 23.5 (3.1) 0.638

Letter fluency 17.8 (5.1) 17.3 (5.3) 16.1 (4.9) 0.711

  Visuospatial

Benton’s judgement of line orientation 26 (3.4) 25.3 (3.7) 23.1 (4.8) 0.134

Hooper 25.9 (2.1) 25.0 (2.9) 23.9 (3.1) 0.082

Disease- specific measures

  Years from diagnosis – 4.0 (2.5) 4.5 (2.7) 0.238

  UPDRS total score – 42.9 (19.4) 57.8 (24.3) 0.014

  UPDRS motor score – 22.7 (11.7) 26.2 (15.2) 0.052

  Right side affected at onset – 28 (45.9) 4 (26.7) 0.187

  RBDSQ – 3.8 (2.1) 5.7 (2.4) 0.003

  Sniffin sticks – 7.6 (2.9) 6.9 (3.4) 0.003

  LEDD – 427.1 (220.1) 431.0 (233.1) 0.951

All data shown are mean (SD) except gender and affected size.
In bold characteristics that significantly differed between groups.
For all neuropsychology measures, higher scores indicate better performance, except Stroop Colour and Interference where lower scores imply better performance.
*Statistically significant difference between PD- VH and PD non- VH.
†Statistically significant difference between PD non- VH and controls.
‡Statistically significant difference between PD- VH and controls.
§Best binocular score used; LogMAR and D15: lower score implies better performance, Pelli- Robson: higher score implies better performance.
HADS, Hospital Anxiety and Depression Scale (higher scores indicate increased anxiety and depression) LEDD, levodopa equivalent dose; MMSE, Mini- Mental State Examination; 
MOCA, Montreal Cognitive Assessment; PD, Parkinson’s disease; RBDSQ, REM sleep behaviour disorder scale; UPDRS, Unified Parkinson’s Disease Rating Scale; VH, visual 
hallucination.
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Anxiety and depression scores (using the HADS) were not 
correlated with MDm subnucleus volume or mean tract FC at 
baseline or longitudinally (see online supplemental table 3 and 
online supplemental figures 2 and 3).

DISCUSSION
This study sheds light on the timeline and spatial profile of struc-
tural thalamic involvement in patients with PD and VH. We have 
shown that: (a) the right mediodorsal medial thalamus is affected 
in PD with hallucinations, with white matter tracts connected to 
the right mediodorsal thalamus showing macrostructural changes 
(reduced FC) at baseline and volume loss within the nucleus 
after 18 months, (b) widespread white matter macrostructural 
changes develop over time involving the majority of thalamocor-
tical white matter tracts and (c) white matter changes associated 
with PD- hallucinations precede loss of cortical thickness, with 
whole- brain white matter changes already seen at baseline but 
differences in cortical thickness only evolving after follow- up.

By using a recently described probabilistic atlas derived from ex 
vivo imaging and histology,20 we were able to detect differences in 
volumes within the right mediodorsal medial thalamic subnucleus 
in PD with hallucinations. The mediodorsal medial nucleus is a 
higher order, associative thalamic nucleus with multiple reciprocal 
connections with the prefrontal and anterior cingulate cortex.42 Its 
role in cognition is now well established, particularly in sustaining 
PFC activity during working and spatial memory43 and monitoring 
and updating mental representations.13 It has also been implicated 
in psychiatric disease; patients with schizophrenia show reduced 
functional activation and associated reduced functional connec-
tivity to the PFC during executive tasks;44 they also show grey 
matter atrophy in the mediodorsal thalamus.45 46 Reduced func-
tional connectivity of the mediodorsal thalamus with the paracin-
gulate and posterior cingulate has also been described in patients 
with Parkinson’s and cognitive impairment.47 The complex way 
that the mediodorsal medial nucleus interacts with the PFC is 

not fully understood, however, there is evidence to suggest that 
it may act as a regulator of PFC function:48 reduced input from 
the mediodorsal medial nucleus, due to white matter degeneration 
and neuronal loss within the nucleus could result in subsequent 
unregulated PFC activity.

In whole- brain fixel- based analysis, we saw a significant poste-
rior predominance of white matter changes in PD- VH: changes 
in the splenium of the corpus callosum and posterior thalamic 
radiations seen at baseline progressed during follow- up to 
involve multiple tracts such as the tapetum and posterior internal 
capsules but frontal connections remained relatively preserved. 
Reduced connectivity between subcortical regions and visuo-
spatial regions when combined with unregulated PFC activity 
(due to reduced control from the mediodorsal medial thalamic 
nucleus), which retains its other cortical white matter projec-
tions, may partly explain the overweighting of prior knowledge 
seen in PD- hallucinators.8

In addition, significant longitudinal changes were seen in 
infratentorial regions, particularly in bilateral middle cerebellar 
peduncles. Increasing evidence has demonstrated a potential 
crucial role for the cerebellum in the development of hallucina-
tions: atrophy of the cerebellum has been described in patients 
with PD and VH,49–51 reduced metabolism of the vermis has 
been shown in patients with hallucinations secondary to Lewy 
body disorders,52 and a recent study of lesional hallucinations 
using network lesion mapping revealed a common network 
associated with hallucinations, with connectivity to the cere-
bellar vermis and inferior cerebellum.53 The cerebellum plays 
an important role in cognition, crucially by updating predictive 
models of behaviours through error learning54 with sensitivity 
to errors associated with the activity of the cerebellar vermis.55 
Loss of grey and white matter within the cerebellum may lead to 
a reduced sensitivity to prediction errors and may contribute to 
the relative overweighting of prior knowledge seen during visual 
perception in PD hallucinators.8

Table 2 Longitudinal changes in patients with Parkinson’s disease without hallucinations (PD non- VH) and patients with hallucinations (PD- VH)

Cognitive test PD non- VH n=61 PD- VH n=15 PD non- VH n=61 PD- VH n=15 Statistic

General cognition Baseline visit Follow- up visit (18 months) P value*

MOCA 28.0 (2.3) 27.6 (1.8) 28.1 (2.1) 25.5 (5.2) t=2.93
p=0.005

MMSE 29.0 (1.2) 28.9 (1.3) 29.1 (1.0) 27.7 (3.2) U=317.5
p=0.030

Motor symptoms

  UPDRS total score 42.9 (19.4) 57.8 (24.3) 41.8 (6.3) 58.4 (17.2) t=0.345
p=0.731

  UPDRS motor score 22.7 (11.7) 26.2 (15.2) 21.7 (10.2) 26.1 (10.2) t=0.244
p=0.808

  LEDD 427.1 (220.1) 431.0 (233.1) 427.1 (220.1) 431.0 (233.1) –

Hallucinations

  Weekly visual 
hallucinations

– 14 (93.3) – 12 (80.0) x2=0.001
p=0.985

  UM- PDHQ – 3.5 (2.9) – 3.7 (3.2) t=0.179
p=0.859

All data shown are mean (SD) except the presence of weekly visual hallucinations which is presented as n (%).
No difference was seen in any individual cognitive tests longitudinally between PD- VH and PD non- VH; results of individual cognitive tests per domain are presented in online 
supplemental table 2).
UM- PDHQ: University of Miami Parkinson’s disease Hallucinations Questionnaire: higher scores indicate more severe hallucinations.
*Statistical comparison of individual performance change (performance in follow- up visit – performance in baseline visit) for each metric; using t- test for normally distributed 
variables and Mann- Whitney for non- normally distributed variables. In bold characteristics that significantly differed in terms of change between visit 2 and baseline between 
groups.
LEDD, levodopa dose equivalence score; MMSE, Mini- Mental State Examination; MOCA, Montreal Cognitive Assessment; PD, Parkinson’s disease; UPDRS, Unified Parkinson’s 
Disease Rating Scale; VH, visual hallucination.
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Figure 1 Whole brain, grey matter and white matter changes in patients with Parkinson’s disease (PD) and visual hallucinations (VH) at 18 months 
follow- up. (A) Changes in cortical thickness seen in patients with compared with those without hallucinations (PD non- VH) at 18 months follow- up, on a 
surface rendered right hemisphere (left: lateral view top panel, medial view bottom panel) and left hemisphere. No statistically significant changes were seen 
in cortical thickness at baseline imaging. Colour coding indicates cluster significance for group- by- time interactions. Significance levels are on a logarithmic 
scale of p values (−log10). Positive values indicate PD- VH cortical thickness <PD non- VH; negative values indicate PD- VH >PD non VH. Results are corrected 
for false discovery rate across both hemispheres. (B) Changes in white matter macrostructure (fibre cross- section, FC) seen in PD- VH compared with PD non- 
VH at longitudinal follow- up. Baseline changes are presented in online supplemental figure 1. Results are displayed as streamlines; these correspond to fixels 
that significantly differed between PD low and high visual performers (family- wise error correction (FWE)- corrected p<0.05). Streamlines are coloured by 
percentage reduction (colourbars) in PD- VH compared with PD non- VH.
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Figure 2 Thalamic subnucleus specific changes in PD with visual hallucinations compared with PD without hallucinations at 18 months follow- up. (A) 
Diagrammatic representation of the human thalamic subnuclei. Highlighted in pink are the nuclei showing significant longitudinal changes in volume in 
PD with visual hallucinations (PD- VH) compared with PD without hallucinations (PD non- VH). The medial mediodorsal nucleus is further subdivided into 
mediodorsal medial parvocellular and mediodorsal medial magnocellular nuclei. Intralaminar nuclei include the Pc, Pf, CeM, CL and CM. (B) Longitudinal 
change in thalamic nuclei volumes for the right MDm and the left Pc in PD- VH, PD nonVH in mm3. Corrected for age, gender, total intracranial volume and 
time between scan. Family wise error (FDR) corrected p- value presented for the group- by- time interaction comparison between PD- VH and PD non- VH 
participants. Error bars represent SD. (C) Change in thalamic nuclei volumes for the right MDm and the left Pc in PD participants was correlated with severity 
of visual hallucinations, assessed using the University of Miami Parkinson’s disease Hallucinations Questionnaire. Higher scores indicating more severe 
hallucinations. AV, anteroventral; CeM, central medial; Cl, central lateral; CM, centromedian; L_Sg, limitans; LD, laterodorsal; LGN, lateral geniculate; LP, 
lateral posterior; MDl, mediodorsal medial parvocellular; MDm, mediodorsal medial magnocellular; MGN, medial geniculate; MVRe, reuniens medial ventral; 
PD, Parkinson’s disease; Pf, parafascicular; PuA, pulvinar anterior; PuI, pulvinar inferior; PuL, pulvinar lateral; PuM, pulvinar medial; VA, ventral anterior; 
VAmc, ventral anterior magnocellular; VLa, ventral lateral anterior; VLp, ventral lateral posterior; VPL, ventral posterolateral; VM, ventromedial; ρ, Spearman 
correlation coefficient.
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Interestingly, both in whole- brain and thalamic analyses, we 
saw white matter macrostructural changes in PD- VH before 
any changes in cortical thickness or thalamic volume loss were 
evident: patients with PD- VH showed significant macrostruc-
tural (reduced FC) and microstructural changes (reduced FD) 
within posterior white matter tracts already at baseline, in the 
absence of any cortical thickness changes. In addition, the right 
mediodorsal medial thalamus, which showed reduced volume 
in PD- VH at follow- up, showed macrostructural changes in its 
connections with the cortex at baseline.

Although, this result could be due to different sensitivities of 
the imaging modalities used to assess grey and white matter, it 
provides further support for the important role white matter 
degeneration plays in PD. Axonal pathology has been demon-
strated prior to dopaminergic neuronal loss in animal22 56 and 
cell models.57 Alpha- synuclein plays a role in axonal growth with 
higher density, thinner axons seen in the brain of patients with 
early PD.58 Imaging biomarkers that assess white matter integrity 
such as fixel- based analysis might be more sensitive at picking up 
anatomical abnormalities at the earliest stages of PD; our find-
ings support this.

Our finding of changes in thalamic grey and white matter 
in PD with hallucinations could underlie the more widespread 
network differences found in PD hallucinators.6 11 12 The medial 
mediodorsal nucleus, which showed volume reduction in PD 

hallucinators, is a feasible target for deep brain stimulation, 
which has been performed in small numbers of patients with 
severe obsessive compulsive disorder.59 Given the changes in 
white matter connectivity from the medial mediodorsal nucleus 
to the cortex seen in PD hallucinators, further work in the 
connectivity between this subnucleus and PFC, in particular, 
could yield possible connectomic targets for deep brain stimula-
tion60 to treat hallucinations in PD.

Although the LGN has previously been functionally impli-
cated in PD hallucinations,53 61 we did not find specific volume 
or tract reductions for the LGN at baseline, although reductions 
in tracts connected to the LGN were seen longitudinally. It is 
possible that changes in functional connections with the LGN do 
not affect structural integrity until later stages.

Several methodological considerations need to be considered 
when interpreting our findings. Our participants underwent 
imaging acquisition while continuing their usual dopaminergic 
medications. Given we are assessing structural metrics, it is 
unlikely that these will be affected by medication and levodopa 
equivalent doses did not differ between PD- VH and PD non- VH. 
The number of hallucinators in our cohort is consistent with 
reports from other groups showing that minor hallucinations 
can be seen even in patients recently diagnosed with PD.62 Due 
to the imaging acquisition protocols in our study, we could not 
formally quantify the presence of white matter hyperintensities. 

Table 3 Grey matter areas showing significant longitudinal differences in cortical thickness or thalamic nucleus volumes between PD patients with 
visual hallucinations (PD- VH) and those without hallucinations (PD non- VH)

Changes in cortical thickness

Tailarach coordinates

Hemisphere Anatomical location Number of vertices Size (mm2) Zmaxx y z

28.1 −20.8 37.8 L Precuneus 368 140.54 7.5

−32.7 55.4 14.2 R Caudal anterior cingulate 136 56.87 7.4

29 13.8 27.1 R Precentral 143 39.47 7.4

3.5 92.5 −31 R Rostral middle frontal 115 57.25 7.3

27.7 −66.5 28.8 L Superior frontal 134 55.16 7.2

−16 29.5 −12.3 L Insula 184 45.62 7.1

−20.4 −11 42.5 L Postcentral 113 29.17 7.1

−15.8 28.4 −31.5 L Insula 343 136.58 7

5.7 67.6 30.9 L Superior frontal 196 98.74 6.9

22.8 12.3 −5.5 R Postcentral 126 31.91 6.7

−30.2 42.5 41.1 R Superior frontal 53 27.29 6.7

38.1 48.9 −28.4 L Rostral anterior cingulate 50 29.98 6.6

16.7 25.3 −27.5 R Insula 152 57.93 6.6

28.3 −29.1 31.3 R Supramarginal 91 24.73 6.6

35.8 0.5 25.4 R Postcentral 84 22.18 6.4

3.5 −86.9 −28.8 R Lateral occipital 19 9.09 6.3

30.2 24.7 38.3 L Superior frontal 50 15.03 6.1

−33.5 62.6 4.4 R Caudal anterior cingulate 50 29.73 6.1

39.4 −7 −29.4 R Superior temporal 29 9.06 6.1

−4 93.4 −27.3 L Rostral middle frontal 41 21.08 6

−27.7 36.1 11.5 L Precentral 25 9.54 5.9

Changes in thalamic subnucleus volume

Thalamic subnucleus Hemisphere Beta P value Q value

Mediodorsal medial magnocellular R −0.037 0.002 0.05

Paracentral L −0.016 9.85E- 06 <0.001

Anatomical locations extracted from aparc freesurfer annotation.
Zmax indicates the −log10 (p value) for the cluster, a threshold of 5.613 was calculated to represent false discover rate (FDR) corrected values p<0.05 for both hemispheres.
No statistically changes were seen at baseline imaging between PD- VH and PD non- VH participants.
L, left; PD, Parkinson’s disease; R, right.VH, visual hallucination;
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Figure 3 Thalamic tract- of- interest changes in FC in PD- VH compared with those without hallucinations at baseline and during longitudinal follow- up. (A) 
Baseline visit. Reduction (mean, 95% CI) in FC visualised for patients with PD- VH compared with patients with PD without hallucinations (PD non- VH). Tracts 
with significantly reduced FC (FDR- corrected p value<0.05) are shown in dark red (right MDm and right CeM), while tracts where there are no significant 
changes in FDC are plotted in grey. (B) Visit 2 (18 months follow- up). Reduction (mean, 95% CI) in FC visualised for PD- VH compared with PD non- VH. 
Tracts with significantly reduced FC (FDR- corrected p value<0.05) are shown in colour, while tracts with no significant changes in FDC are plotted in grey. 
White matter tracts from all but three thalamic subnuclei (Pc, Pt and VM bilaterally) showed more severe volume loss in PD- VH compared with PD non- 
VH at longitudinal follow- up. Bilaterally tracts originating in the VM nuclei showed significantly less volume loss in PD- VH compared with PD non- VH. AV, 
anteroventral; CeM, central medial; CL, central lateral; CM, centromedian; L_Sg, limitans; LD, laterodorsal; LGN, lateral geniculate; LP, lateral posterior; MDl, 
mediodorsal medial parvocellular, MDm, mediodorsal medial magnocellular; MGN, medial geniculate; MVRe, reuniens medial ventral; Pc, paracentral; PD, 
Parkinson’s disease; Pf, parafascicular; PuA, pulvinar anterior; PuI, pulvinar inferior; PuL, pulvinar lateral; PuM, pulvinar medial; VA, ventral anterior; VAmc, 
ventral anterior Pt, paratenial; magnocellular; VH, visual hallucination; VLa, ventral lateral anterior; VLp, ventral lateral posterior; VPL, ventral posterolateral; 
VM, ventromedial.
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Although no studies using fixel- based analysis have specifically 
controlled for white matter hyperintensities,10 38 40 if present, 
these are likely to decrease FD.63 It is not clear if white matter 
hyperintensities could have an effect on FC, which was our 
primary metric to assess white matter longitudinally; this could 
be clarified in future studies. Hallucinations in PD are associated 
with other non- motor symptoms and worsening cognition;1 2 5 
similarly, in our cohort, PD- VH had higher rates of anxiety and 
depression. Although HADS scores were not correlated with 
MDm volume or tract FC at baseline or longitudinally, the struc-
tural changes identified in our study could be influenced by non- 
motor symptoms other than hallucinations.

Patients with PD and VH show both white matter and grey 
matter degeneration longitudinally with changes in metrics of 
white matter macrostructure such as fibre cross- section occur-
ring before loss of cortical thickness. In addition, we show 
that thalamic cortical connectivity is affected in Parkinson’s- 
associated hallucinations, particularly within the mediodorsal 
nucleus. Our findings provide mechanistic support for the role 
of the thalamus as a driver of network imbalance in Parkinson’s 
hallucinations and support the use of imaging techniques aimed 
at white rather than grey matter in assessing early stages of PD.
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