14 research outputs found

    Cell-Free DNA and CXCL10 Derived from Bronchoalveolar Lavage Predict Lung Transplant Survival.

    Get PDF
    Standard methods for detecting chronic lung allograft dysfunction (CLAD) and rejection have poor sensitivity and specificity and have conventionally required bronchoscopies and biopsies. Plasma cell-free DNA (cfDNA) has been shown to be increased in various types of allograft injury in transplant recipients and CXCL10 has been reported to be increased in the lung tissue of patients undergoing CLAD. This study used a novel cfDNA and CXCL10 assay to evaluate the noninvasive assessment of CLAD phenotype and prediction of survival from bronchoalveolar lavage (BAL) fluid. A total of 60 BAL samples (20 with bronchiolitis obliterans (BOS), 20 with restrictive allograft syndrome (RAS), and 20 with stable allografts (STA)) were collected from 60 unique lung transplant patients; cfDNA and CXCL10 were measured by the ELISA-based KIT assay. Median cfDNA was significantly higher in BOS patients (6739 genomic equivalents (GE)/mL) versus STA (2920 GE/mL) and RAS (4174 GE/mL) (p < 0.01 all comparisons). Likelihood ratio tests revealed a significant association of overall survival with cfDNA (p = 0.0083), CXCL10 (p = 0.0146), and the interaction of cfDNA and CXCL10 (p = 0.023) based on multivariate Cox proportional hazards regression. Dichotomizing patients based on the median cfDNA level controlled for the mean level of CXCL10 revealed an over two-fold longer median overall survival time in patients with low levels of cfDNA. The KIT assay could predict allograft survival with superior performance compared with traditional biomarkers. These data support the pursuit of larger prospective studies to evaluate the predictive performance of cfDNA and CXCL10 prior to lung allograft failure

    Consent to organ offers from public health service "Increased Risk" donors decreases time to transplant and waitlist mortality.

    No full text
    BackgroundThe Public Health Service Increased Risk designation identified organ donors at increased risk of transmitting hepatitis B, hepatitis C, and human immunodeficiency virus. Despite clear data demonstrating a low absolute risk of disease transmission from these donors, patients are hesitant to consent to receiving organs from these donors. We hypothesize that patients who consent to receiving offers from these donors have decreased time to transplant and decreased waitlist mortality.MethodsWe performed a single-center retrospective review of all-comers waitlisted for liver transplant from 2013 to 2019. The three competing risk events (transplant, death, and removal from transplant list) were analyzed. 1603 patients were included, of which 1244 (77.6%) consented to offers from increased risk donors.ResultsCompared to those who did not consent, those who did had 2.3 times the rate of transplant (SHR 2.29, 95% CI 1.88-2.79, p < 0.0001), with a median time to transplant of 11 months versus 14 months (p < 0.0001), as well as a 44% decrease in the rate of death on the waitlist (SHR 0.56, 95% CI 0.42-0.74, p < 0.0001). All findings remained significant after controlling for the recipient age, race, gender, blood type, and MELD. Of those who did not consent, 63/359 (17.5%) received a transplant, all of which were from standard criteria donors, and of those who did consent, 615/1244 (49.4%) received a transplant, of which 183/615 (29.8%) were from increased risk donors.ConclusionsThe findings of decreased rates of transplantation and increased risk of death on the waiting list by patients who were unwilling to accept risks of viral transmission of 1/300-1/1000 in the worst case scenarios suggests that this consent process may be harmful especially when involving "trigger" words such as HIV. The rigor of the consent process for the use of these organs was recently changed but a broader discussion about informed consent in similar situations is important

    Cell-Free DNA and CXCL10 Derived from Bronchoalveolar Lavage Predict Lung Transplant Survival

    No full text
    Standard methods for detecting chronic lung allograft dysfunction (CLAD) and rejection have poor sensitivity and specificity and have conventionally required bronchoscopies and biopsies. Plasma cell-free DNA (cfDNA) has been shown to be increased in various types of allograft injury in transplant recipients and CXCL10 has been reported to be increased in the lung tissue of patients undergoing CLAD. This study used a novel cfDNA and CXCL10 assay to evaluate the noninvasive assessment of CLAD phenotype and prediction of survival from bronchoalveolar lavage (BAL) fluid. A total of 60 BAL samples (20 with bronchiolitis obliterans (BOS), 20 with restrictive allograft syndrome (RAS), and 20 with stable allografts (STA)) were collected from 60 unique lung transplant patients; cfDNA and CXCL10 were measured by the ELISA-based KIT assay. Median cfDNA was significantly higher in BOS patients (6739 genomic equivalents (GE)/mL) versus STA (2920 GE/mL) and RAS (4174 GE/mL) (p < 0.01 all comparisons). Likelihood ratio tests revealed a significant association of overall survival with cfDNA (p = 0.0083), CXCL10 (p = 0.0146), and the interaction of cfDNA and CXCL10 (p = 0.023) based on multivariate Cox proportional hazards regression. Dichotomizing patients based on the median cfDNA level controlled for the mean level of CXCL10 revealed an over two-fold longer median overall survival time in patients with low levels of cfDNA. The KIT assay could predict allograft survival with superior performance compared with traditional biomarkers. These data support the pursuit of larger prospective studies to evaluate the predictive performance of cfDNA and CXCL10 prior to lung allograft failure.status: publishe
    corecore