73 research outputs found

    An Efficient Paradigm for Genetic Epidemiology Cohort Creation

    Get PDF
    Development of novel methodologies to efficiently create large genetic epidemiology cohorts is needed. Here we describe a rapid, precise and cost-efficient method for collection of DNA from cases previously experiencing an osteoporotic fracture by identifying cases using and administrative health-care databases. Over the course of 14 months we collected DNA from 1,130 women experiencing an osteoporotic fracture, at a cost of $54 per sample. This cohort is among the larger DNA osteoporotic fracture collections in the world. The novel method described addresses a major unmet health care research need and is widely applicable to any disease that can be identified accurately through administrative data

    The Empirical Power of Rare Variant Association Methods: Results from Sanger Sequencing in 1,998 Individuals

    Get PDF
    The role of rare genetic variation in the etiology of complex disease remains unclear. However, the development of next-generation sequencing technologies offers the experimental opportunity to address this question. Several novel statistical methodologies have been recently proposed to assess the contribution of rare variation to complex disease etiology. Nevertheless, no empirical estimates comparing their relative power are available. We therefore assessed the parameters that influence their statistical power in 1,998 individuals Sanger-sequenced at seven genes by modeling different distributions of effect, proportions of causal variants, and direction of the associations (deleterious, protective, or both) in simulated continuous trait and case/control phenotypes. Our results demonstrate that the power of recently proposed statistical methods depend strongly on the underlying hypotheses concerning the relationship of phenotypes with each of these three factors. No method demonstrates consistently acceptable power despite this large sample size, and the performance of each method depends upon the underlying assumption of the relationship between rare variants and complex traits. Sensitivity analyses are therefore recommended to compare the stability of the results arising from different methods, and promising results should be replicated using the same method in an independent sample. These findings provide guidance in the analysis and interpretation of the role of rare base-pair variation in the etiology of complex traits and diseases

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P\u3c5 × 10−8), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk

    The Causal Effect of Vitamin D Binding Protein (DBP) Levels on Calcemic and Cardiometabolic Diseases: A Mendelian Randomization Study

    Get PDF
    Background: Observational studies have shown that vitamin D binding protein (DBP) levels, a key determinant of 25-hydroxy- vitamin D (25OHD) levels, and 25OHD levels themselves both associate with risk of disease. If 25OHD levels have a causal influence on disease, and DBP lies in this causal pathway, then DBP levels should likewise be causally associated with disease. We undertook a Mendelian randomization study to determine whether DBP levels have causal effects on common calcemic and cardiometabolic disease. Methods and Findings: We measured DBP and 25OHD levels in 2,254 individuals, followed for up to 10 y, in the Canadian Multicentre Osteoporosis Study (CaMos). Using the single nucleotide polymorphism rs2282679 as an instrumental variable, we applied Mendelian randomization methods to determine the causal effect of DBP on calcemic (osteoporosis and hyperparathyroidism) and cardiometabolic diseases (hypertension, type 2 diabetes, coronary artery disease, and stroke) and related traits, first in CaMos and then in large-scale genome-wide association study consortia. The effect allele was associated with an age-and sex-adjusted decrease in DBP level of 27.4 mg/l (95% CI 24.7, 30.0; n=2,254). DBP had a strong observational and causal association with 25OHD levels (p=3.2x10(-19)). While DBP levels were observationally associated with calcium and body mass index (BMI),these associations were not supported by causal analyses. Despite well-powered sample sizes from consortia, there were no associations of rs2282679 with any other traits and diseases: fasting glucose (0.00 mmol/l [95% CI -0.01, 0.01]; p=1.00; n=46,186); fasting insulin (0.01 pmol/l [95% CI -0.00, 0.01,] ;p=0.22; n=46,186); BMI (0.00 kg/m(2) [95% CI -0.01, 0.01]; p=0.80; n=127,587); bone mineral density (0.01 g/cm(2) [95% CI -0.01, 0.03]; p=0.36; n=32,961); mean arterial pressure (-0.06 mm Hg [95% CI -0.19, 0.07]); p=0.36; n=28,775); ischemic stroke (odds ratio [OR] = 1.00 [95% CI 0.97, 1.04]; p=0.92; n=12, 389/62, 004 cases/controls); coronary artery disease (OR = 1.02 [95% CI 0.99, 1.05]; p=0.31; n=2,233/64, 762); or type 2 diabetes (OR = 1.01 [95% CI 0.97, 1.05]; p=0.76; n=9, 580/53, 810). Conclusions: DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except 25OHD levels. It remains to be determined whether 25OHD has a causal effect on these outcomes independent of DBP

    Sphingomyelin phosphodiesterase-1 (SMPD1) coding variants do not contribute to low levels of high-density lipoprotein cholesterol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Niemann-Pick disease type A and B is caused by a deficiency of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase-1 (<it>SMPD1</it>) gene. In Niemann-Pick patients, <it>SMPD1 </it>gene defects are reported to be associated with a severe reduction in plasma high-density lipoprotein (HDL) cholesterol.</p> <p>Methods</p> <p>Two common coding polymorphisms in the <it>SMPD1 </it>gene, the G1522A (G508R) and a hexanucleotide repeat sequence within the signal peptide region, were investigated in 118 unrelated subjects of French Canadian descent with low plasma levels of HDL-cholesterol (< 5<sup>th </sup>percentile for age and gender-matched subjects). Control subjects (n = 230) had an HDL-cholesterol level > the 25<sup>th </sup>percentile.</p> <p>Results</p> <p>For G1522A the frequency of the G and A alleles were 75.2% and 24.8% respectively in controls, compared to 78.6% and 21.4% in subjects with low HDL-cholesterol (<it>p </it>= 0.317). The frequency of 6 and 7 hexanucleotide repeats was 46.2% and 46.6% respectively in controls, compared to 45.6% and 49.1% in subjects with low HDL-cholesterol (<it>p </it>= 0.619). Ten different haplotypes were observed in cases and controls. Overall haplotype frequencies in cases and controls were not significantly different.</p> <p>Conclusion</p> <p>These results suggest that the two common coding variants at the <it>SMPD1 </it>gene locus are not associated with low HDL-cholesterol levels in the French Canadian population.</p

    Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva

    Get PDF
    BackgroundCorticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood.MethodsWe investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, maternal smoking status, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children's blood cells collected at mid-childhood (n = 239, age: 6.7-10.3 years) additionally adjusting for the children's age at blood drawn.ResultsMaternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate &lt;0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P &lt; 0.05, β = 0.64, SE = 0.30).ConclusionIn our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8–1.2×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance

    Pleiotropic genes for metabolic syndrome and inflammation

    Get PDF
    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic associations across phenotypes and might explain a part of MetS correlated genetic architecture. These findings warrant further functional investigation
    • …
    corecore