21 research outputs found

    Advances in Nematode Identification: A Journey from Fundamentals to Evolutionary Aspects

    Get PDF
    Nematodes are non-segmented roundworms evenly distributed with various habitats ranging to approximately every ecological extremity. These are the least studied organisms despite being the most diversified group. Nematodes are the most critical equilibrium-maintaining factors, having implications on the yield and health of plants as well as well-being of animals. However, taxonomic knowledge about nematodes is scarce. As a result of the lack of precise taxonomic features, nematode taxonomy remains uncertain. Morphology-based identification has proved inefficacious in identifying and exploring the diversity of nematodes, as there are insufficient morphological variations. Different molecular and new evolving methodologies have been employed to augment morphology-based approaches and bypass these difficulties with varying effectiveness. These identification techniques vary from molecular-based targeting DNA or protein-based targeting amino acid sequences to methods for image processing. High-throughput approaches such as next-generation sequencing have also been added to this league. These alternative approaches have helped to classify nematodes and enhanced the base for increased diversity and phylogeny of nematodes, thus helping to formulate increasingly more nematode bases for use as model organisms to study different hot topics about human well-being. Here, we discuss all the methods of nematode identification as an essential shift from classical morphometric studies to the most important modern-day and molecular approaches for their identification. Classification varies from DNA/protein-based methods to the use of new emerging methods. However, the priority of the method relies on the quality, quantity, and availability of nematode resources and down-streaming applications. This paper reviews all currently offered methods for the detection of nematodes and known/unknown and cryptic or sibling species, emphasizing modern-day methods and budding molecular techniques

    Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    No full text
    The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots

    Fe and Zn stress induced gene expression analysis unraveled mechanisms of mineral homeostasis in common bean (Phaseolus vulgaris L.)

    No full text
    Iron (Fe) and zinc (Zn) stress significantly affects fundamental metabolic and physiological processes in plants that results in reduction of plant growth and development. In the present study, common bean variety; Shalimar French Bean-1 (SFB-1) was used as an experimental material. Four different MGRL media i.e. normal MGRL medium (Control), media without Fe (0-Fe), media without Zn (0-Zn) and media with excess Zn (300-Zn) were used for growing seeds of SFB-1 under in vitro condition for three weeks under optimum conditions. Three week old shoot and root tissues were harvested from the plants grown in these four different in vitro conditions and were, subjected to Fe and Zn estimation. Further, extraction of total RNA for differential gene expression of ten candidate genes selected based on our in silico investigation and their classification, phylogeny and expression pattern was unraveled. Expression analysis of three candidate genes (OPT3, NRAMP2 and NRAMP3) in roots revealed possible cross talk among Fe/Zn stress that was further confirmed by observing less accumulation of Fe in roots under both these conditions. However, we observed, higher accumulation of Fe in shoots under 0-Fe condition compared to control that suggests precise sensing for priority based compartmentalization and partitioning leading to higher accumulation of Fe in shoots. Furthermore, the expression analysis of IRT1, FRO1 and Ferritin 1 genes under Fe/Zn stress suggested their role in uptake/transport and signaling of Fe and Zn, whereas the expression of ZIP2, NRAMP1, HA2 and GLP1 genes were highly responsive to Zn in Phaseolus vulgaris. The identified genes highly responsive to Fe and Zn stress condition can be potential candidates for overcoming mineral stress in dicot crop plants

    Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview

    No full text
    In the present era, food scientists are concerned about exploiting functional crops with nutraceutical properties. Buckwheat is one of the functional pseudocereals with nutraceutical components used in the treatment of health-related diseases, malnutrition, and celiac diseases. As a preferred diet as a gluten-free product for celiac diseases, buckwheat is a good source of nutrients, bioactive components, phytochemicals, and antioxidants. The general characteristics and better nutritional profile of buckwheat than other cereal family crops were highlighted by previous investigations. In buckwheats, bioactive components like peptides, flavonoids, phenolic acids, d-fagomine, fagopyritols, and fagopyrins are posing significant health benefits. This study highlights the current knowledge about buckwheat and its characteristics, nutritional constituents, bioactive components, and their potential for developing gluten-free products to target celiac people (1.4% of the world population) and other health-related diseases

    The resilience of rice under water stress will be driven by better roots: Evidence from root phenotyping, physiological, and yield experiments

    No full text
    Rice is the principal food grain crop of the world, grown on over 164 million hectares. Water is an important production constraint in food crops. Till recently, crop breeding efforts have mainly focused on the shoot, whereas most of the major drivers of the yield gap directly influence the root system, thereby implicating the plant's resource acquisition efficiency. Despite the substantial experimental evidence for the importance of root traits in drought tolerance, lesser efforts have been directed towards drought-adaptive root traits based on the selection index in rice. The above-ground components are easy to phenotype, and lesser efforts towards root traits stem mainly from the phenotyping bottlenecks of reliable recovery and evaluation of root traits. Moreover, greater phenotypic plasticity of root traits in response to changes in soil resource status, and lack of less costly screening techniques for roots is still a challenge, leading to comparatively lesser information about the potential role of roots in developing drought-resilient rice varieties. Root phenes are not as high in number as is the huge shopping list of above-ground traits and exploring the natural variation of root traits could assist rice improvement programs in developing varieties with desired root phenes for target environments. More importantly, elucidation of the relationship of root traits with the physiological and biochemical responses contributing to grain yield is also imperative. In this paper, we discuss the potential role of roots in determining the resilience of rice varieties for future farming systems based on evidence from root phenotyping, the relationship of root phenes with physiological efficiency and yield under water stress in rice

    Putting CRISPR-Cas system in action: a golden window for efficient and precise genome editing for crop improvement

    No full text
    ABSTRACTThe daunting task of feeding an ever-growing population is an immense challenge for the contemporary scientific community, especially in view of the rapidly changing climate throughout the world. Amidst these threatening crises, we witness rapid development in genome editing (GE) technologies, revolutionizing the field of applied genomics and molecular breeding. Various GE tools have been developed during the last two decades, but the CRISPR/Cas system has most recently made a significant impact on crop improvement. The major breakthroughs of this versatile toolbox are genomic modifications like single base-substitutions, multiplex GE, gene regulation, screening mutagenesis, and enhancing the breeding of wild crop plants. Previously, this toolbox was used to modify genes related to significant traits such as biotic/abiotic resistance/tolerance, post-harvest traits, nutritional regulation, and to address self-incompatibility analysis-related challenges. In the present review, we have demonstrated the functional dynamics of CRISPR-based GE and its applicability in targeting genes to accomplish novel editing of crops. The compiled knowledge will provide a solid foundation for highlighting the primary source for applying CRISPR/Cas as a toolbox for enhancing crops, to achieve food and nutritional security
    corecore