25 research outputs found

    HyStem®: A Unique Clinical Grade Hydrogel for Present and Future Medical Applications

    Get PDF
    Medicine needs targeted, minimally-invasive delivery of protein-based and cell-based therapeutics to increase efficacy and reduce occurrence and severity of side effects. Local delivery requires a matrix to sequester and protect the medicine until its effect can be realized. The problem is, unlike stable small molecule drugs, proteins and cells cannot be co-packaged with a matrix in a prefilled syringe—they must be mixed with their matrix at the point of care. HyStem hydrogels fix this problem: They are arguably the first commercially available, GMP-qualified biodegradable hydrogels both with the ability to formulate with either proteins or cells in the hospital/surgical suite and with a history of safe use in humans. HyStem is designed to be protein, cell-friendly and in situ crosslinkable, permitting homogeneous mixing of therapeutics. One HyStem formulation is 510(k) cleared and another the subject of two European clinical trials. Key applications include localized delivery of therapeutic growth factors, antibodies, and cells. In the future, we envision HyStem’s flexibility and clinical use history forming the basis for a new generation of therapeutics. Two examples described here include HyStem’s use for patient-derived organoid culture to develop new drugs as well as for bioprinting to manufacture new organs

    Modification of Fruit Ripening by Suppressing Gene Expression

    Full text link

    The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing

    Get PDF
    BACKGROUND: The clinical outcomes following intrasynovial flexor tendon repair are highly variable. Excessive inflammation is a principal factor underlying the formation of adhesions at the repair surface and affecting matrix regeneration at the repair center that limit tendon excursion and impair tendon healing. A previous in-vitro study revealed that adipose-derived mesenchymal stromal cells (ASCs) modulate tendon fibroblast response to macrophage-induced inflammation. The goal of the current study was therefore to explore the effectiveness of autologous ASCs on the inflammatory stage of intrasynovial tendon healing in vivo using a clinically relevant animal model. METHODS: Zone II flexor tendon transections and suture repairs were performed in a canine model. Autologous ASC sheets were delivered to the surface of repaired tendons. Seven days after repair, the effects of ASCs on tendon healing, with a focus on the inflammatory response, were evaluated using gene expression assays, immunostaining, and histological assessments. RESULTS: ASCs delivered via the cell sheet infiltrated the host tendon, including the repair surface and the space between the tendon ends, as viewed histologically by tracking GFP-expressing ASCs. Gene expression results demonstrated that ASCs promoted a regenerative/anti-inflammatory M2 macrophage phenotype and regulated tendon matrix remodeling. Specifically, there were significant increases in M2-stimulator (IL-4), marker (CD163 and MRC1), and effector (VEGF) gene expression in ASC-sheet treated tendons compared with nontreated tendons. When examining changes in extracellular matrix expression, tendon injury caused a significant increase in scar-associated COL3A1 expression and reductions in COL2A1 and ACAN expression. The ASC treatment effectively counteracted these changes, returning the expression levels of these genes closer to normal. Immunostaining further confirmed that ASC treatment increased CD163(+) M2 cells in the repaired tendons and suppressed cell apoptosis at the repair site. CONCLUSIONS: This study provides a novel approach for delivering ASCs with outcomes indicating potential for substantial modulation of the inflammatory environment and enhancement of tendon healing after flexor tendon repair

    Intracerebral Delivery of Brain-Derived Neurotrophic Factor Using HyStem<sup>®</sup>-C Hydrogel Implants Improves Functional Recovery and Reduces Neuroinflammation in a Rat Model of Ischemic Stroke

    Get PDF
    Ischemic stroke is a leading cause of death and disability worldwide. Potential therapeutics aimed at neural repair and functional recovery are limited in their blood-brain barrier permeability and may exert systemic or off-target effects. We examined the effects of brain-derived neurotrophic factor (BDNF), delivered via an extended release HyStem&#174;-C hydrogel implant or vehicle, on sensorimotor function, infarct volume, and neuroinflammation, following permanent distal middle cerebral artery occlusion (dMCAo) in rats. Eight days following dMCAo or sham surgery, treatments were implanted directly into the infarction site. Rats received either vehicle, BDNF-only (0.167 &#181;g/&#181;L), hydrogel-only, hydrogel impregnated with 0.057 &#181;g/&#181;L of BDNF (hydrogel + BDNFLOW), or hydrogel impregnated with 0.167 &#181;g/&#181;L of BDNF (hydrogel + BDNFHIGH). The adhesive removal test (ART) and 28-point Neuroscore (28-PN) were used to evaluate sensorimotor function up to two months post-ischemia. The hydrogel + BDNFHIGH group showed significant improvements on the ART six to eight weeks following treatment and their behavioral performance was consistently greater on the 28-PN. Infarct volume was reduced in rats treated with hydrogel + BDNFHIGH as were levels of microglial, phagocyte, and astrocyte marker immunoexpression in the corpus striatum. These data suggest that targeted intracerebral delivery of BDNF using hydrogels may mitigate ischemic brain injury and restore functional deficits by reducing neuroinflammation
    corecore