8 research outputs found

    Thermal Decomposition Of [m3(co)12] (m = Ru, Os) Physisorbed Onto Porous Vycor Glass: A Route To A Glass/ruo2 Nanocomposite

    Get PDF
    This paper reports the preparation and characterization of oxide/glass nanocomposites, obtained by the impregnation and thermal decomposition of the trinuclear metal carbonyl clusters[M3(CO)12] (M = Ru, Os) inside the pores of porous Vycor glass (PVG). The intermediate species formed during the thermal treatment of the [M3(CO)12] adsorbed PVG materials were studied by UV-VIS-NIR and diffuse reflectance infrared (DR-IR) spectroscopy. At 65°C (M-Ru) and 110°C (M = Os), formation of surface bound [HM3(CO)10(μ- OSi≃)] species occurs, as a result of oxidative addition of a PVG surface silanol group to a cluster M-M bond. At T > 130°C (M = Ru) and T > 200°C (M = Os) cluster breakdown is observed, with formation of [M(CO)(n)(OSi≃)2] (n = 2 and/or 3) species. When [Ru3(CO)12] incorporated PVG is heated in air at T >250°C, decomposition of the cluster and formation of RuO2 nanoparticles are observed. AT 1200 °C, collapse of the glass pores leads to the formation of a transparent silica glass/RuO2 nanocomposite of particle average size 45 Å.92519523Borreli, N.F., Morse, D.L., (1983) Appl. Phys. Lett., 43, p. 1Borreli, N.F., Morse, D.L., Schreus, J.W.H., (1983) J. Appl. Phys., 54, p. 3344Simon, R., Gafney, H.D., (1983) Inorg. Chem., 22, p. 573Darsillo, M.S., Gafney, H.D., Paquete, M.S., (1987) J. Am. Chem. Soc., 109, p. 3275Simon, R.C., Gafney, H.D., Morse, D.L., (1985) Inorg. Chem., 24, p. 2565Gafney, H.D., (1990) J. Macromol. Sci-Chem. A, 27, p. 1187Sunil, D., Sokolov, J., Rafailovich, M.H., Duan, X., Gafney, H.D., (1993) Inorg. Chem., 32, p. 4489Mendoza, E.A., Wolkow, E., Sunil, D., Wong, P., Sobokov, J., Rafailovich, M.H., DeuBoer, M., Gafney, H.D., (1991) Langmuir, 7, p. 3046Sunil, D., Sokolov, J., Rafailovich, M.H., Kotyuzhanskii, B., Gafney, H.D., Wilkens, B.J., Harson, A.L., (1993) J. Appl. Phys., 74, p. 3768Gafney, H.D., Xu, S.P., (1995) Inorg. Chim. Acta., 240, p. 645Luong, J.C., (1988) Superlatt. Microstruct., 4, p. 385Wang, Y., Herron, N., (1991) Res. Chem. Interm., 15, p. 17Stramel, R.D., Nakamura, T., Thomas, J.K., (1988) J. Chem. Soc., Faraday Trans, 1, 84, p. 1287Hendershot, D.G., Gaskill, D.K., Justus, B.L., Fatemi, M., Berry, A.D., (1993) Appl. Phys. Lett., 63, p. 3324Luong, J.C., Borreli, N.F., (1989) Mater. Res. Soc. Symp. Proc., 114, p. 695Justos, B.L., Tonucci, R., Berry, A.D., (1992) Appl. Phys. Lett., 61, p. 3151Dvorak, M.D., Justus, B.L., Gaskill, D.K., Hendershot, D.G., (1995) Appl. Phys. Lett., 66, p. 804Yamashita, H., Ichihashi, Y., Harada, M., Stewart, G., Fox, M.A., Anpo, M., (1996) J. Catal., 158, p. 97Elmer, T.H., Holland, H.J., (1987) Am. Ceram. Soc. Bull., 66, p. 1265Huston, A.L., Justus, B.L., Johnson, T.L., (1996) Appl. Phys. Lett., 68, p. 3327Ozin, G.A., (1992) Adv. Mater., 4, p. 612Wang, Y., Herron, N., (1987) J. Phys. Chem., 91, p. 5005Brus, L., (1986) J. Phys. Chem., 90, p. 2555Steigerwald, M.L., Brus, L.E., (1990) Acc. Chem. Res., 23, p. 183Weller, H., (1996) Angew. Chem., Int. Ed. Engl., 35, p. 1079Wang, Y., Herron, N., Mahler, W., Suna, A., (1989) J. Opt. Soc. Am. B, 6, p. 4Cao, G., Rabenberg, L.K., Numm, C.M., Mallouk, T.E., (1991) Chem. Mater., 3, p. 149Murray, C.B., Norris, D.J., Bawendi, M.G., (1993) J. Am. Chem. Soc., 115, p. 8706Carpenter, J.P., Lukehart, C.M., Henderson, D.O., Mu, R., Jones, B.D., Glosser, R., Stock, S.R., Zhu, J.G., (1996) Chem. Mater., 8, p. 1268Hagfeldt, A., Gratzel, M., (1995) Chem. Rev., 95, p. 49MacDougall, J.E., Eckert, H., Stucky, G.D., Herron, N., Wang, Y., Moller, K., Bein, T., Cox, D., (1989) J. Am. Chem. Soc., 111, p. 8006Watzke, H.J., Fendler, J.H., (1987) J. Phys. Chem., 91, p. 854Giannelis, E.P., (1996) Adv. Mater., 8, p. 29Gehr, R.J., Boyd, R.W., (1996) Chem. Mater., 8, p. 1807Judeinstein, P., Sanchez, C., (1996) J. Mater. Chem., 6, p. 511Corning glass work (1979) Mater. Eng., 90, p. 92Levitz, P., Ehret, G., Sinha, S.K., Drake, J.M., (1991) J. Chem. Phys., 95, p. 6151Gafney, H.D., (1990) Coord. Chem. Rev., 104, p. 113Law, M.J.D., Ramasubramanian, N., (1966) J. Phys. Chem., 70, p. 2740Fan, J., Gafney, H.D., (1994) J. Phys. Chem., 98, p. 13058Gates, B.C., Guczi, L., Knözinger, H., (1996) Metal Clusters in Catalysis, , Elsevier Science Publishing, New YorkMoskovits, M., (1996) Metal Clusters, , Wiley-Interscience Publishing, New YorkMingos, D.M.P., Wales, D.J., (1990) Introduction to Cluster Chemistry, , Prentice Hall, Englewood Cliffs, NJBarth, R., Gates, B.C., Zhao, Y., Knözinger, H., Hulse, J., (1983) J. Catal., 82, p. 147Psaro, R., Ugo, R., Zanderighi, G.M., Besson, B., Smith, A.K., Basset, J.M., (1981) J. Organomet. Chem., 213, p. 215Asakura, K., Yamada, M., Iwasawa, Y., Kuroda, H., (1985) Chem. Lett., p. 511Knözinger, H., Zhao, Y., (1981) J. Catal., 71, p. 337Smith, A.K., Besson, B., Basset, J.M., Psaro, R., Fusi, A., Ugo, R., (1980) J. Organomet. Chem., 192, pp. C31Alexiev, V.D., Binsted, N., Evans, J., Greaves, G.N., Price, R.J., (1987) J. Chem. Soc., Chem. Commun., p. 395Deeba, M., Gates, B.C., (1981) J. Catal., 67, p. 303Theolier, A., Choplin, A., D'Ornelas, L., Basset, J.-M., (1983) Polyhedron, 2, p. 119Walter, T.H., Frauenhoff, G.R., Shapley, J.R., Oldfield, E., (1991) Inorg. Chem., 30, p. 4732Besson, B., Moraweck, B., Smith, K., Basset, J.M., (1980) J. Chem. Soc., Chem. Commun., p. 569Wade, W.H., (1974) Soc. Petroleum Eng. J., p. 139Straley, C., Matteson, A., Feng, S., Schwartz, L.M., Kenyon, W.E., Banavar, J.R., (1989) Appl. Phys. Lett., 51, p. 1146Okubo, T., Inoue, H., (1987) J. Chem. Eng. Jpn., 20, p. 590Tyler, D.R., Levenson, R.A., Gray, H.B., (1978) J. Am. Chem. Soc., 100, p. 7888Huang, Y.S., Pollak, F.H., (1982) Solid State Commun., 43, p. 92

    New Route For The Obtention Of Cadmium Antimony Oxide Semiconducting Ceramic Powders

    No full text
    Here we describe a new route for the obtention of the non-stoichiometric compound Cd2Sb2O7-x, through the thermal decomposition of cadmium-exchanged crystalline antimonic acid (CAA/Cd). Cadmium-exchanged crystalline antimonic acid already has the pyrochlore-type structure, and it seems to us that the precursor structure plays an important role in the formation of the final product. This new synthetic route presents some advantages compared to the other methods mentioned: (i) The synthesis is carried out at lower temperatures and for reduced heating times;, (ii) The ceramic powders are obtained from only one precursor reagent, leading to a final product with great chemical and phase purities. It is important to note that the ion-exchanged modified host structures provide an interesting way to prepare oxide ceramics powders.13860760

    Multifunctional Materials Based On Iron/iron Oxide-filled Carbon Nanotubes/natural Rubber Composites

    No full text
    This work describes the synthesis, characterization and study of properties of novel multifunctional composite materials obtained by natural-rubber latex and a special kind of multi-walled carbon nanotube (CNT), in which the cavities are filled by magnetic species. To prepare stable aqueous dispersions of CNTs, two approaches have been employed, based on a mixture of the surfactant sodium dodecyl sulfate or a previous treatment with a mixture of acid solutions. The composites have been characterized by infrared and Raman spectroscopy, X-ray micro-tomography, transmission and scanning electron microscopy, and atomic and magnetic force microscopy. A good adhesion between the CNTs and the polymer matrices was obtained. Several samples have been prepared containing different amounts of CNTs (from 0.01 to 10 wt.%), and the effect of carbon nanotubes in the electrical, mechanical, chemical and thermal properties of the composites was evaluated by thermogravimetric analysis, resistivity measurements, stress-strain mechanical tests and solvent sorption measurements. The occurrence of networks of CNTs in the polymeric matrices provided significant increases in all of these properties. Additionally, because of the species encapsulated in CNT, the composites exhibit magnetic behavior, confirmed by magnetic force microscopy. This approach results in novel multifunctional material with great potential for further applications. © 2012 Elsevier Ltd. All rights reserved.501246854695Rippel, M.M., Paula Leite, C.A., Galembeck, F., Elemental mapping in natural rubber latex films by electron energy loss spectroscopy associated with transmission electron microscopy (2002) Anal Chem, 74 (11), pp. 2541-2546Van Beilen, J.B., Poirier, Y., Establishment of new crops for the production of natural rubber (2007) Trends Biotechnol, 25 (11), pp. 522-529Cyr, D.R., (1991) Encyclopedia of Chemical Technology, , Wiley-Interscience New YorkBokobza, L., Chauvin, J.P., Reinforcement of natural rubber: Use of in situ generated silicas and nanofibres of sepiolite (2005) Polymer, 46 (12), pp. 4144-4151Valadares, L.F., Leite, C.A.P., Galembeck, F., Preparation of natural rubber-montmorillonite composite in aqueous medium: Evidence for polymer-platelet adhesion (2006) Polymer, 47 (2), pp. 672-678Rezende, C.A., Bragança, F.C., Doi, T.R., Lee, L.T., Galembeck, F., Boué, F., Natural rubber-clay composites: Mechanical and structural properties (2010) Polymer, 51 (16), pp. 3644-3652Angellier, H., Molina-Boisseau, S., Dufresne, A., Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber (2005) Macromolecules, 38 (22), pp. 9161-9170Cai, H.H., Li, S.D., Tian, G.R., Wang, H.B., Wang, J.H., Reinforcement of natural rubber latex film by ultrafine calcium carbonate (2003) J Appl Polym Sci, 87 (6), pp. 982-985Karásek, L., Sumita, M., Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites (1996) J Mater Sci, 31 (2), pp. 281-289Bokobza, L., Multiwall carbon nanotube elastomeric composites: A review (2007) Polymer, 48 (17), pp. 4907-4920Bhattacharyya, S., Sinturel, C., Bahloul, O., Saboungi, M.L., Thomas, S., Salvetat, J.-P., Improving reinforcement of natural rubber by networking of activated carbon nanotubes (2008) Carbon, 46 (7), pp. 1037-1045Zhan, Y., Wu, J., Xia, H., Yan, N., Fei, G., Yuan, G., Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process (2011) Macromol Mater Eng, 7, pp. 590-602Moniruzzaman, M., Winey, K.I., Polymer composites containing carbon nanotubes (2006) Macromolecules, 39 (16), pp. 5194-5205Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C., Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties (2010) Prog Polym Sci, 35 (3), pp. 357-401Coleman, J.N., Khan, U., Gun'Ko, Y.K., Mechanical reinforcement of polymers using carbon nanotubes (2006) Adv Mater, 18 (6), pp. 689-706Grossiord, N., Loos, J., Koning, C.E., Strategies for dispersing carbon nanotubes in highly viscous polymers (2005) J Mater Chem, 15 (24), pp. 2349-2352Cai, D., Song, M., Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite (2008) Carbon, 46 (15), pp. 2107-2112Grunlan, J., Mehrabi, A., Bannon, M., Bahr, J., Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold (2004) Adv Mater, 16 (2), pp. 150-153Peng, Z., Feng, C., Luo, Y., Li, Y., Kong, L.X., Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques (2010) Carbon, 48 (15), pp. 4497-4503Anand, K.A., Jose, T.S., Alex, R., Joseph, R., Natural rubber-carbon nanotube composites through latex compounding (2010) Int J Polym Mater, 59 (1), pp. 33-44Schnitzler, M.C., Oliveira, M.M., Ugarte, D., Zarbin, A.J.G., One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors (2003) Chem Phys Lett, 381 (56), pp. 541-548Moraes, R.A., Matos, C.F., Castro, E.G., Schreiner, W.H., Oliveira, M.M., Zarbin, A.J.G., The effect of different chemical treatments on the structure and stability of aqueous dispersion of iron- and iron oxide-filled multi-walled carbon nanotubes (2011) J Braz Chem Soc, 22 (11), pp. 2191-2201Nossol, E., Zarbin, A.J.G., A simple and innovative route to prepare a novel carbon nanotube/Prussian blue electrode and its utilization as a highly sensitive H 2O 2 amperometric sensor (2009) Adv Funct Mater, 19 (24), pp. 3980-3986Salvatierra, R.V., Oliveira, M.M., Zarbin, A.J.G., One-pot synthesis and processing of transparent, conducting, and freestanding carbon nanotubes/polyaniline composite films (2010) Chem Mater, 22, pp. 5222-5234Canestraro, C.D., Schnitzler, M.C., Zarbin, A.J.G., Da Luz, M.G.E., Roman, L.S., Carbon nanotubes based composites for photocurrent improvement (2006) Appl Surf Sci, 252 (15), pp. 5575-5578Oliveira, M.M., Zarbin, A.J.G., Carbon nanotubes decorated with both gold nanoparticles and polythiophene (2008) J Phys Chem C, 112 (48), pp. 18783-18786Nossol, E., Zarbin, A.J.G., Carbon paste electrodes made from novel carbonaceous materials: Preparation and electrochemical characterization (2008) Electrochim Acta, 54 (2), pp. 582-589Rippel, M.M., Leite, C.A.P., Lee, L.-T., Galembeck, F., Formation of calcium crystallites in dry natural rubber particles (2005) J Colloid Interf Sci, 288 (2), pp. 449-456Masenelli-Varlot, K., Chazeau, L., Gauthier, C., Bogner, A., Cavaillé, J.Y., The relationship between the electrical and mechanical properties of polymer-nanotube composites and their microstructure (2009) Compos Sci Technol, 69 (10), pp. 1533-1539Bokobza, L., Rapoport, O., Reinforcement of natural rubber (2002) J Appl Polym Sci, 85 (11), pp. 2301-2316Bokobza, L., Kolodziej, M., On the use of carbon nanotubes as reinforcing fillers for elastomeric materials (2006) Polym Int, 55 (9), pp. 1090-1098Broza, G., Piszczek, K., Schulte, K., Sterzynski, T., Composites of poly(vinyl chloride) with carbon nanotubes (CNT) (2007) Compos Sci Technol, 67 (5), pp. 890-894Bokobza, L., Rahmani, M., Belin, C., Bruneel, J.L., El Bounia, N.E., Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers (2008) J Polym Sci Pol Phys, 46 (18), pp. 1939-1951Sui, G., Zhong, W.H., Yang, X.P., Yu, Y.H., Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes (2008) Mater Sci Eng A, 485 (12), pp. 524-531Li, S.D., Yu, H.P., Peng, Z., Zhu, C.S., Li, P.S., Study on thermal degradation of sol and gel of natural rubber (2000) J Appl Polym Sci, 75 (11), pp. 1339-1344Menon, A.R.R., Pillai, C.K.S., Nando, G.B., Thermal degradation characteristics of natural rubber vulcanizates modified with phosphorylated cashew nut shell liquid (1996) Polym Degrad Stabil, 52 (3), pp. 265-271Cornell, S.W., Koenig, J.L., Raman spectra of polyisoprene rubbers (1969) Macromolecules, 2 (5), pp. 546-549Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites (2006) Nano Lett, 6 (6), pp. 1141-1145Jou, W.S., Cheng, H.Z., Hsu, C.F., The electromagnetic shielding effectiveness of carbon nanotubes polymer composites (2007) J Alloy Compd, 434-435, pp. 641-64

    Multifunctional And Environmentally Friendly Nanocomposites Between Natural Rubber And Graphene Or Graphene Oxide

    No full text
    This work describes a green route to multifunctional nanocomposite materials composed of natural rubber (NR) latex and graphene (rGO) or graphene oxide (GO). Aqueous solutions with different concentrations of GO and rGO (prepared with the surfactant cetyltrimethylammonium bromide - CTAB) were mixed with natural rubber latex under magnetic stirring followed by sonication. The slurries obtained after casting were dried in an oven in air at 70 °C for 24 h. The nanocomposites were characterized by TEM and SEM, AFM and KFM. The thermal, electrical and mechanical properties were evaluated using TGA, resistivity measurements (four-point) and DMA. Swelling tests were performed using three solvents with different polarities: xylene, isopropanol and water. The inclusion of filler networks in the polymeric matrices provided significant improvements in the electrical, chemical and mechanical properties, in comparison to the unfilled polymer. In addition, the nanocomposites proved to be biodegradable. © 2014 Elsevier Ltd. All rights reserved.78469479Chiu, C.W., Huang, T.K., Wang, Y.C., Alamani, B.G., Lin, J.J., Intercalation strategies in clay/polymer hybrids (2014) Prog Polym Sci, 39, pp. 443-485Huang, J.C., Carbon black filled conducting polymers and polymer blends (2002) Adv Polym Sci, 21, pp. 299-313Al-Saleh, M.H., Sundararaj, U., Review of the mechanical properties of carbon nanofiber/polymer composites (2011) Compos A, 42, pp. 2126-2142Rahmat, M., Hubert, P., Carbon nanotube-polymer interactions in nanocomposites: A review (2011) Compos Sci Technol, 72, pp. 72-84Sham, A.Y.W., Notley, S.M., A review of fundamental properties and applications of polymer-graphene hybrid materials (2013) Soft Matter, 9, pp. 6645-6653Liu, G., Neoh, K.G., Kang, E.T., Dispersible graphene oxide-polymer nanocomposites (2012) Polym-graphene Nanocompos, 26, p. 179Wang, Y., Ameer, G.A., Sheppard, B.J., Langer, R., A tough biodegradable elastomer (2002) Nat Biotechnol, 20, pp. 602-606Darder, M., Aranda, P., Ferrer, M.L., Gutiérrez, M.C., Del Monte, F., Ruiz-Hitzky, E., Progress in bionanocomposite and bioinspired foams (2011) Adv Mater, 23, pp. 5262-5267Rippel, M.M., Leite, C.A.P., Galembeck, F., Elemental mapping in natural rubber latex films by electron energy loss spectroscopy associated with transmission electron microscopy (2002) Anal Chem, 74, pp. 2541-2546Sadasivuni, K.K., Ponnamma, D., Thomas, S., Grohens, Y., Evolution from graphite to graphene elastomer composites (2013) Prog Polym Sci, , 10.1016/j.progpolymsci.2013.08.003Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S., Graphene based materials: Past, present and future (2011) Prog Mater Sci, 56, pp. 1178-1271Verdejo, R., Bernal, M.M., Romasanta, L.J., Lopez-Manchado, M.A., Graphene filled polymer nanocomposites (2011) J Mater Chem, 21, pp. 3301-3310Kim, H., Abdala, A.A., Macosko, C.W., Graphene/polymer nanocomposites (2010) Macromolecules, 43, pp. 6515-6530Koning, C., Grossiord, N., Hermant, M.C., (2012) Polymer Carbon Nanotube Composites: The Polymer Latex Concept, , Pan Stanford PubTkalya, E., Ghislandi, M., Alekseev, A., Koning, C., Loos, J., Latex-based concept for the preparation of graphene-based polymer nanocomposites (2010) J Mater Chem, 20, pp. 3035-3039Wu, J., Xing, W., Huang, G., Li, H., Tang, M., Wu, S., (2013) Polymer, 54, pp. 3314-3323Wu, S., Tang, Z., Guo, B., Zhang, L., Jia, D., Vulcanization kinetics of graphene/natural rubber nanocomposites (2013) RSC Adv, 3, pp. 443-485Domingues, S.H., Salvatierra, R.V., Oliveira, M.M., Zarbin, A.J.G., Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization (2011) Chem Commun, 47, pp. 2592-2594Park, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat Nanotechnol, 4, pp. 217-224Rippel, M.M., Lee, L.T., Leite, C.A.P., Galembeck, F., Skim and cream natural rubber particles: Colloidal properties, coalescence and film formation (2003) J Colloid Interface Sci, 268, pp. 330-340Kim, J., Hong, S., Park, D., Shim, S., Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation (2010) Macromol Res, 18, pp. 558-565Rippel, M.M., Leite, C.A.P., Lee, L.T., Galembeck, F., Formation of calcium crystallites in dry natural rubber particles (2005) J Colloid Interface Sci, 288, pp. 449-456Potts, J.R., Shankar, O., Du, L., Ruoff, R.S., Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites (2012) Macromolecules, 45, pp. 6045-6055Valadares, L.F., Leite, C.A.P., Galembeck, F., Preparation of natural rubber-montmorillonite nanocomposite in aqueous medium: Evidence for polymer-platelet adhesion (2006) Polymer, 47, pp. 672-678Cassu, S.N., Felisberti, M.I., Comportamento dinâmico-mecânico e relaxações em polímeros e blendas poliméricas (2005) Quim Nova, 28, pp. 255-263Geethamma, V., Kalaprasad, G., Groeninckx, G., Thomas, S., Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites (2005) Compos A, 36, pp. 1499-1506López-Manchado, M.A., Biagiotti, J., Valentini, L., Kenny, J.M., Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber (2004) J Appl Polym Sci, 92, pp. 3394-3400Robertson, C.G., Rackaitis, M., Further consideration of viscoelastic two glass transition behavior of nanoparticle-filled polymers (2011) Macromolecules, 44, pp. 1177-1181Li, S.D., Yu, H.P., Peng, Z., Zhu, C.S., Li, P.S., Study on thermal degradation of sol and gel of natural rubber (2000) J Appl Polym Sci, 75, pp. 1339-1344Menon, A.R.R., Pillai, C.K.S., Nando, G.B., Thermal degradation characteristics of natural rubber vulcanizates modified with phosphorylated cashew nut shell liquid (1996) Polym Degrad Stab, 52, pp. 265-271Uskoković, V., Drofenik, M., Ban, I., The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1-hexanol/water microemulsion (2004) J Magn Magn Mater, 274, pp. 294-302Zhan, Y., Lavorgna, M., Buonocore, G., Xia, H., Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing (2012) J Mater Chem, 22, pp. 10464-10468Bokobza, L., Kolodziej, M., On the use of carbon nanotubes as reinforcing fillers for elastomeric materials (2006) Polym Int, 22, pp. 1090-1098Broza, G., Piszczek, K., Schulte, K., Sterzynski, T., Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT) (2007) Compos Sci Technol, 67, pp. 890-894Bragança, F.C., Valadares, L.F., Leite, C.A.P., Galembeck, F., Counterion effect on the morphological and mechanical properties of polymer-clay nanocomposites prepared in an aqueous medium (2007) Chem Mater, 19, pp. 3334-3342Scherillo, G., Lavorgna, M., Buonocore, G.G., Zhan, Y.H., Xia, H.S., Mensitieri, G., Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites (2014) ACS Appl Mater Interfaces, 6, pp. 2230-2234Wu, J., Huang, G., Li, H., Wu, S., Liu, Y., Zheng, J., Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content (2013) Polymer, 54, pp. 1930-1937Matos, C.F., Galembeck, F., Zarbin, A.J.G., Multifunctional materials based on iron/iron oxide-filled carbon nanotubes/natural rubber composites (2012) Carbon, 50, pp. 4685-4695Akhavan, O., Ghaderi, E., Toxicity of graphene and graphene oxide nanowalls against bacteria (2010) ACS Nano, 4, pp. 5731-5736Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., Dresselhaus, M.S., Raman spectroscopy of graphene and carbon nanotubes (2011) Adv Phys, 60, pp. 413-55

    New Polyaniline/porous Glass Composite

    No full text
    In this work we report the preparation of a glass-polymer composite, obtained by the in situ oxidative polymerization of aniline, in the pores of Porous Vycor Glass (PVG). A piece of PVG was added to acid aniline solution. PVG adsorbs aniline via an ion-exchange process (H+ from PVG porous surface/C6H5NH3 +). The impregnated PVG was added to a (NH4)2S2O8 acid solution. The glass gradually went to dark green with the formation of polyaniline in its conducting form, the emeraldine salt. The counter-anions are the SiO- groups on the pores surface of the glass, as confirmed by 29Si-CP-MAS-NMR. Addition of the composite to an NH4OH solution leads do a change from dark green to dark blue (emeraldine base), and this process is reversible.8401/03/15107108Chinn, D., Dubow, J., Liess, M., Josowicz, M., Janata, J., (1995) Chem. Mater., 7, p. 1504Kanatzidis, M.G., (1990) Chem Eng. News, DEC.3, p. 36Wuang, W.S., Humphrey, B.D., MacDiarmid, A.G., (1986) J. Chem. Soc., Faraday Trans. 1, 82, p. 2385Geniès, E.M., Boyle, A., Lapkowski, M., Tsintavis, C., (1990) Synth. Met., 36, p. 139Enzel, P., Bein, T., (1989) J. Phys. Chem., 93, p. 6270(1979) Mater. Eng., 90, p. 92Maia, D.J., Zarbin, A.J.G., Alves, O.L., De Paoli, M.A., (1995) Adv. Mater., 7, p. 792Furukawa, Y., Hara, T., Hyodo, Y., Harada, I., (1986) Synth. Met., 16, p. 18

    Nanocomposites Glass/conductive Polymers

    No full text
    We report on the preparation and characterization of two glass/conducting polymer nanocomposites obtained by the in situ oxidative polymerization of pyrrole and aniline inside the pores of Porous Vycor Glass (PVG). Oxidative polymerization of pyrrole was done via Cu2+ cation impregnated in the PVG pores. The polymerization of aniline was undertaken by impregnating PVG with the monomer, followed by an acid solution of (NH4)2S2O8. These nanocomposites were characterized by diffuse reflectance FT infrared spectroscopy, UV-Vis-NIR absorption spectroscopy, thermogravimetric analysis, Raman spectroscopy, solid state 13C and 29Si CP-MAS-NMR, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and conductivity measurements. The results showed that both polymers are formed inside the PVG pores in their oxidized conductive state, with the Si-O- groups of the glass surface acting as counter-anions. The dimensions of the pores of the glass preclude cross-linking of the polymers, allowing only formations of linear chains. The results suggest the formation of polymeric wires in the bulk of the glass substrate. © 1999 Elsevier Science S.A. All rights reserved.993227235Genies, E.M., Lapkowiski, M., Santier, C., Vieil, E., (1987) Synth. Met., 18, p. 631Duek, E.A.R., De Paoli, M.-A., Mastragostino, M., (1992) Adv. Mater., 4, p. 287Bäuerle, P., (1993) Adv. Mater., 5, p. 879MacDiarmid, A.G., Yang, L.S., Huang, W.S., Humphrey, B.D., (1987) Synth. Met., 18, p. 393Kanatzidis, M.G., (1990) Chem. Eng. News, 3, p. 36Deshpande, M.V., Malnerkar, D.P., (1993) Prog. Polym. Sci., 18, p. 623Gustafsson, G., Cao, Y., Tracy, G.M., Klavetter, F., Colaneri, N., Heeger, A.J., (1992) Nature, 357, p. 477Parker, I.D., (1994) J. Appl. Phys., 75, p. 1656Roth, S., Graupner, W., (1993) Synth. Met., 55-57, p. 3623Martin, C.R., (1995) Acc. Chem. Res., 28, p. 61Wu, C.G., Degroot, D.C., Marcy, H.O., Schindler, J.L., Kannewurf, C.R., Bakas, T., Papaefthymiou, V., Kanatzidis, M.G., (1995) J. Am. Chem. Soc., 117, p. 9229Enzel, P., Bein, T., (1989) J. Phys. Chem., 93, p. 6270Ozin, G.A., (1992) Adv. Mater., 4, p. 612Penner, R.M., Martin, C.R., (1986) J. Electrochem. Soc., 113, p. 2206Cai, Z., Martin, C.R., (1989) J. Am. Chem. Soc., 111, p. 4138Parthasarathy, R.V., Martin, C.R., (1994) Chem. Mater., 6, p. 1627Bein, T., Enzel, P., (1989) Angew. Chem. Int. Ed. Engl., 28, p. 1962Enzel, P., Bein, T., (1989) J. Chem. Soc. Chem. Commun., p. 1326Wu, C.G., Bein, T., (1994) Chem. Mater., 6, p. 1109Wu, C.G., Bein, T., (1994) Science, 264, p. 1757Kanatzidis, M.G., Tonge, L.M., Marks, T.J., Marcy, H.O., Kannewurf, C.R., (1987) J. Am. Chem. Soc., 109, p. 3797Kanatzidis, M.G., Wu, C.W., Marcy, H.O., Kannewurf, C.R., (1989) J. Am. Chem. Soc., 111, p. 4139Wu, C.G., Degroot, D.C., Marcy, H.O., Schindler, J.L., Kannewurf, C.R., Liu, Y.J., Hirpo, W., Kanatzidis, M.G., (1996) Chem. Mater., 8, p. 1992Srinivasan, S., Pramanik, P., (1994) J. Mater. Sci. Lett., 13, p. 365Kerr, T.A., Wu, H., Nazar, L.F., (1996) Chem. Mater., 8, p. 2005Bissessour, R., Degroot, D.C., Schindler, J.L., Kannewurf, C.R., Kanatzidis, M.G., (1993) J. Chem. Soc. Chem. Commun., p. 687Chao, K.J., Chang, T.C., Ho, S.Y., (1994) J. Mater. Chem., 4, p. 367Nakajima, H., Matsubayashi, G., (1993) Chem. Lett., p. 423Maia, D.J., Alves, O.L., De Paoli, M.-A., (1997) Synth. Met., 90, p. 37Giannelis, E.P., (1996) Adv. Mater., 8, p. 29Judeinstein, P., Sandez, C., (1996) J. Mater. Chem., 6, p. 511Wen, J., Wilkes, G.L., (1996) Chem. Mater., 8, p. 1667(1979) Mater. Eng., 90, p. 92Maia, D.J., Zarbin, A.J.G., Alves, O.L., De Paoli, M.-A., (1995) Adv. Mater., 7, p. 792Zarbin, A.J.G., De Paoli, M.-A., Alves, O.L., (1997) Synth. Met., 84, p. 107Kostic, R., Racovic, D., Stepanyan, S.A., Davidova, J.E., Gribov, L.A., (1995) J. Chem. Phys., 102, p. 3104Armes, S.P., (1987) Synth. Met., 20, p. 365Rapi, S., Bocchi, V., Gardini, G.P., (1988) Synth. Met., 24, p. 217Vigmond, S.J., Ghaemmaghami, V., Thompsom, M., (1997) Can. J. Chem., 73, p. 1711Furukawa, Y., Tazawa, S., Fujii, Y., Harada, I., (1988) Synth. Met., 24, p. 329Jenden, C.M., Davidson, R.G., Turner, T.G., (1993) Polymer, 34, p. 1649Zhong, C.J., Tian, C.Q., Tian, Z.W., (1990) J. Phys. Chem., 94, p. 2171Umapathy, S., Hester, R.E., (1990) J. Mol. Struct., 224, p. 113Inoue, T., Hosoya, Y., Yamase, T., (1987) Chem. Lett., p. 563Blanking, J.R., Millar, G.J., Bowmaker, G.A., Cooney, R.P., (1993) J. Raman Spectrosc., 24, p. 523Devreux, F., Bidan, G., Syed, A.A., Tsintavis, C., (1985) J. Phys., 46, p. 1595Wuang, W.S., Humphrey, B.D., MacDiarmid, A.G., (1986) J. Chem. Soc., Faraday Trans. 1, 82, p. 2385Gafney, H.D., (1990) Coord. Chem. Rev., 104, p. 113Law, M.J.D., Ramasubramanian, N., (1966) J. Phys. Chem., 70, p. 2740Fan, J., Gafney, H.D., (1994) J. Phys. Chem., 98, p. 13058Brissete, C., Sandorfy, C., (1960) Can. J. Chem., 38, p. 34Cabana, A., Sandorfy, C., (1962) Can. J. Chem., 40, p. 622Huang, W.S., MacDiarmid, A.G., (1993) Polymer, 34, p. 1833Chinn, D., Dubow, J., Li, J., Janata, J., Josowicz, M., (1995) Chem. Mater., 7, p. 1510Quillard, S., Berrada, K., Lovarn, G., Lefrant, S., Lapkowiski, M., Pron, A., (1995) New J. Chem., 19, p. 365Furukawa, Y., Hara, T., Hyoto, Y., Harada, I., (1986) Synth. Met., 16, p. 189Sariciftici, N.S., Bartonek, M., Kuzmany, H., (1989) Synth. Met., 29, pp. E193Genies, E.M., Lapkowiski, M., Penneau, J.F., (1988) J. Electroanal. Chem., 249, p. 97Syed, A.A., Dinesan, M.K., (1991) Talanta, 38, p. 815Mattoso, L.C.H., (1996) Quimica Nova, 19, p. 388Weller, H., Fojtik, A., Henglein, A., (1985) Chem. Phys. Lett., 117, p. 48

    Polyaniline Intercalation In α-sn(hpo4)2.h2o

    No full text
    In this work we report the preparation of a inorganic-organic nanocomposite, obtained by the in situ oxidative polymerization of aniline inside the layers of α-Sn(HPO4)2.H2O (α-SnP). Two approaches were used to obtain the α-SnP/polyaniline nanocomposite. Firstly, hydrogen atoms of α-SnP were exchanged with Fe3+ cation to promote aniline polymerization. Secondly, aniline was intercalated in α-SnP and polymerization was performed by (NH4)2S2O8 solution. Both resulting material leads to formation of polyaniline in its conducting form, the emeraldine salt. The characterization results suggest the formation of linear polymer chains between the α-SnP layers.1021-312771278Geniès, E.M., Boyle, A., Lapkowski, M., Tsintavis, C., (1990) Synth. Met., 36, p. 139Enzel, P., Bein, T., (1989) J. Phys. Chem., 93, p. 6270Maia, D.J., Zarbin, A.J.G., Alves, O.L., De Paoli, M.-A., (1995) Adv. Mater., 7, p. 792Zarbin, A.J.G., De Paoli, M.-A., Alves, O.L., (1997) Synth. Met., 84, p. 107Maia, D.J., Alves, O.L., De Paoli, M.-A., (1997) Synth. Met., 90, p. 37Whittinghan, M.S., Jacobson, A.J., (1982) Intercalation Chemistry, p. 147. , Academic PressConstantino, U., Gasperoni, A., (1970) J. Chromatogr., 51, p. 289Furukawa, Y., Hara, T., Hyodo, Y., Harada, I., (1986) Synth. Met., 16, p. 189Geniès, E.M., Lapkowski, M., Penneau, J.F., (1988) J. Electroanal. Chem., 249, p. 9

    Annealing effect on donor-acceptor interface and its impact on the performance of organic photovoltaic devices based on PSiF-DBT copolymer and C60

    No full text
    In this work, poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) was used as active layer in bilayer solar cell with C60 as electron acceptor. As cast devices already show reasonable power conversion efficiency (PCE) that increases to 4% upon annealing at 100 °C. Space charge limited measurements of the hole mobility (μ) in PSiF-DBT give μ ∼ 1.0 × 10−4 cm2/(V s) which does not depend on the temperature of the annealing treatment. Moreover, positron annihilation spectroscopy experiments revealed that PSiF-DBT films are well stacked even without the thermal treatment. The variations in the transport of holes upon annealing are then small. As a consequence, the PCE rise was mainly induced by the increase of the polymer surface roughness that leads to a more effective interface for exciton dissociation at the PSiF-DBT/fullerene heterojunction.Peer reviewe
    corecore