30 research outputs found

    Developments of FPGA-based digital back-ends for low frequency antenna arrays at Medicina radio telescopes

    Get PDF
    In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications

    Brute-Force Mapmaking with Compact Interferometers: A MITEoR Northern Sky Map from 128 MHz to 175 MHz

    Get PDF
    We present a new method for interferometric imaging that is ideal for the large fields of view and compact arrays common in 21 cm cosmology. We first demonstrate the method with the simulations for two very different low-frequency interferometers, the Murchison Widefield Array and the MIT Epoch of Reionization (MITEoR) experiment. We then apply the method to the MITEoR data set collected in 2013 July to obtain the first northern sky map from 128 to 175 MHz at ∼2° resolution and find an overall spectral index of −2.73 ± 0.11. The success of this imaging method bodes well for upcoming compact redundant low-frequency arrays such as Hydrogen Epoch of Reionization Array. Both the MITEoR interferometric data and the 150 MHz sky map are available at http://space.mit.edu/home/tegmark/omniscope.html.National Science Foundation (U.S.) (AST-0908848)National Science Foundation (U.S.) (AST-1105835)National Science Foundation (U.S.) (AST-1440343

    Receiver design for the REACH global 21-cm signal experiment

    Full text link
    We detail the the REACH radiometric system designed to enable measurements of the 21-cm neutral hydrogen line. Included is the radiometer architecture and end-to-end system simulations as well as a discussion of the challenges intrinsic to highly-calibratable system development. Following this, we share laboratory results based on the calculation of noise wave parameters utilising an over-constrained least squares approach demonstrating a calibration RMSE of 80 mK for five hours of integration on a custom-made source with comparable impedance to that of the antenna used in the field. This paper therefore documents the state of the calibrator and data analysis in December 2022 in Cambridge before shipping to South Africa.Comment: 30 pages, 19 figure

    A Real-Time Space Debris Detection System for BIRALES

    Get PDF
    The ever increasing satellite population in near-Earth orbit has made the monitoring and tracking of cooperative and non-cooperative objects ever more important. Non-cooperative objects, or space debris, pose a threat to existing and future satellites as they cannot avoid potential collisions. Furthermore, the orbit of the smaller debris is often not actively monitored. As the population grows, the risk of a collision increases. Thus, various institutions around the world have been upgrading their space detection capabilities in order to better monitor the objects orbiting Earth down to a few centimetres in diameter. One of the latest such systems is the BIstatic RAdar for LEo Survey (BIRALES) space debris detection system based in Italy. The BIRALES system is a bistatic radar composed of a radio transmitter in Sardinia and the Medicina Northern Cross radio telescope near Bologna as the receiver. The backend of this system includes a digital beamformer able to synthetize 32 beams covering the instrument's Field of View (FoV). As a high-velocity object transits, its Doppler shift signature (or track) can be measured. Whilst a number of streak detection algorithms have been proposed for optical telescopes, the number of detection algorithms for high-speed objects for bistatic radars is limited. This work describes the detection algorithm used in the BIRALES space debris detection pipeline. The detection algorithm takes the beamformed, channelized data as input. Firstly, the data undergoes a number of pre-processing stages before the potential space debris candidates are identified. Secondly, the candidates are validated against a number of criteria in order to improve the detection quality. The algorithm was designed to process the incoming data across 32 beams in real-time. Initial validation results on known objects are positive and the system has been shown to reliably determine orbiting objects with minimal false positives

    Future Science Prospects for AMI

    Get PDF
    The Arcminute Microkelvin Imager (AMI) is a telescope specifically designed for high sensitivity measurements of low-surface-brightness features at cm-wavelength and has unique, important capabilities. It consists of two interferometer arrays operating over 13.5-18 GHz that image structures on scales of 0.5-10 arcmin with very low systematics. The Small Array (AMI-SA; ten 3.7-m antennas) couples very well to Sunyaev-Zel'dovich features from galaxy clusters and to many Galactic features. The Large Array (AMI-LA; eight 13-m antennas) has a collecting area ten times that of the AMI-SA and longer baselines, crucially allowing the removal of the effects of confusing radio point sources from regions of low surface-brightness, extended emission. Moreover AMI provides fast, deep object surveying and allows monitoring of large numbers of objects. In this White Paper we review the new science - both Galactic and extragalactic - already achieved with AMI and outline the prospects for much more

    Development of a New Digital Signal Processing Platform for the Square Kilometre Array

    Get PDF
    A novel digital hardware platform has been designed for the Low Frequency Aperture Array (LFAA) component of the Square Kilometre Array (SKA). This board, called Analog Digital Unit (ADU), is a 6U board containing sixteen dual-inputs Analog to Digital Converters (ADC) and two Field Programmable Gate Array (FPGA) devices, capable of digitizing and processing 32 RF input signals. We present the main features of the board and the signal processing firmware that has been developed for LFAA. Although the ADU has been conceived mainly for the low frequency band (50-350 MHz), its use has been proved effective also for higher frequencies (375-650 MHz). In this paper we describe also the application of ADU as the digital acquisition and processing system for PHAROS2, a cryogenically cooled 4-8 GHz Phased Array Feed (PAF) demonstrator. The final part is focused on the future developments of the board
    corecore