4 research outputs found

    Maternal Low-Protein Diet Deregulates DNA Repair and DNA Replication Pathways in Female Offspring Mammary Gland Leading to Increased Chemically Induced Rat Carcinogenesis in Adulthood

    Get PDF
    Studies have shown that maternal malnutrition, especially a low-protein diet (LPD), plays a key role in the developmental mechanisms underlying mammary cancer programming in female offspring. However, the molecular pathways associated with this higher susceptibility are still poorly understood. Thus, this study investigated the adverse effects of gestational and lactational low protein intake on gene expression of key pathways involved in mammary tumor initiation after a single dose of N-methyl-N-nitrosourea (MNU) in female offspring rats. Pregnant Sprague–Dawley rats were fed a normal-protein diet (NPD) (17% protein) or LPD (6% protein) from gestational day 1 to postnatal day (PND) 21. After weaning (PND 21), female offspring (n = 5, each diet) were euthanized for histological analysis or received NPD (n = 56 each diet). At PND 28 or 35, female offspring received a single dose of MNU (25 mg/kg body weight) (n = 28 each diet/timepoint). After 24 h, some females (n = 10 each diet/timepoint) were euthanized for histological, immunohistochemical, and molecular analyses at PDN 29 or 36. The remaining animals (n = 18 each diet/timepoint) were euthanized when tumors reached ≥2 cm or at PND 250. Besides the mammary gland development delay observed in LPD 21 and 28 groups, the gene expression profile demonstrated that maternal LPD deregulated 21 genes related to DNA repair and DNA replication pathways in the mammary gland of LPD 35 group after MNU. We further confirmed an increased γ-H2AX (DNA damage biomarker) and in ER-α immunoreactivity in mammary epithelial cells in the LPD group at PND 36. Furthermore, these early postnatal events were followed by significantly higher mammary carcinogenesis susceptibility in offspring at adulthood. Thus, the results indicate that maternal LPD influenced the programming of chemically induced mammary carcinogenesis in female offspring through increase in DNA damage and deregulation of DNA repair and DNA replication pathways. Also, Cidea upregulation gene in the LPD 35 group may suggest that maternal LPD could deregulate genes possibly leading to increased risk of mammary cancer development and/or poor prognosis. These findings increase the body of evidence of early-transcriptional mammary gland changes influenced by maternal LPD, resulting in differential response to breast tumor initiation and susceptibility and may raise discussions about lifelong prevention of breast cancer risk.Fil: Zapaterini, Joyce R.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Fonseca, Antonio R. B.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bidinotto, Lucas T.. Barretos Cancer Hospital; Brasil. Barretos School of Health Sciences; BrasilFil: Colombelli, Ketlin T.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Rossi, André L. D.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Kass, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; ArgentinaFil: Justulin, Luis A.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Barbisan, Luis F.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasi

    Five years of ReCLes.pt: building a national network in Higher Education

    No full text
    ReCLes. pt 2014 International Conference on Languages and the Market: Competitiveness and Employability, Escola Superior de Hotelaria e Tourismo de Estoril, Estoril, Portugalinfo:eu-repo/semantics/publishedVersio

    Impact of gestational low protein diet and postnatal bisphenol A exposure on chemically induced mammary carcinogenesis in female offspring rats

    No full text
    This study evaluated the effect of gestational low protein diet (LPD) and/or postnatal bisphenol A (BPA) exposure on mammary gland development and carcinogenesis in female offspring. Pregnant Sprague-Dawley rats were fed a normal protein diet (NPD, 17% protein) or LPD (6% protein). At weaning, female offspring were distributed in four groups (NPD, LPD, NPD + BPA, and LPD + BPA) and received vehicle or BPA in drinking water (0.1%), during postnatal day (PND) 21 to 51. On PND 51, some female offspring were euthanized or received a single dose of 7,12-dimethylbenzoanthracene (DMBA, 30 mg/kg, i.g.) and were euthanized on PND 250. On PND 51, neither gestational LPD nor postnatal BPA exposure, individually or in combination, significantly altered the development of mammary gland tree, mean number of terminal structures or estrogen receptor beta (ER-β), proliferating cell nuclear antigen (PCNA) or caspase-3 protein expression in the mammary tissue. A significant reduction in mammary epithelial area (%) was observed in both LPD groups and a significant increase in ER-α protein expression was detected only in LPD group. In LPD + BPA group was observed a significant increase in both fat pad area (%) and in mean number of mammary epithelial cells positive for progesterone receptor (PR). On PND 250, the groups that received BPA presented lower latency and higher tumor incidence and tumor multiplicity and LPD + BPA group more aggressive tumors. These findings suggest that postnatal BPA exposure associated with gestational LPD is able to induce morphological changes in the mammary gland and increase susceptibility to mammary carcinogenesis.Fil: Varuzza, Muriele B.. Univer. Estadual Paulista Botucatu Biosciences Inst.;Fil: Zapaterini, Joyce R.. Univer. Estadual Paulista Botucatu Biosciences Inst.;Fil: Colombelli, Ketlin T.. Univer. Estadual Paulista Botucatu Biosciences Inst.;Fil: Barquilha, Caroline N.. Univer. Estadual Paulista Botucatu Biosciences Inst.;Fil: Justulin, Luis A.. Univer. Estadual Paulista Botucatu Biosciences Inst.;Fil: Muñoz de Toro, Monica Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; ArgentinaFil: Kass, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; ArgentinaFil: Barbisan, Luis F.. Univer. Estadual Paulista Botucatu Biosciences Inst.

    Prenatal exposure to a mixture of different phthalates increases the risk of mammary carcinogenesis in F1 female offspring

    No full text
    Phthalates metabolites have been detected in the urine of pregnant and breastfeeding women. Thus, this study evaluated the adverse effects of maternal exposure to a mixture of six phthalates (Pth mix) on the mammary gland development and carcinogenesis in F1 female offspring. Pregnant female Sprague-Dawley rats were exposed daily to vehicle or Pth mix (35.22% diethyl-phthalate, 21.03% di-(2-ethylhexyl)-phthalate, 14.91% dibutyl-phthalate, 15.10% diisononyl-phthalate, 8.61% diisobutyl-phthalate, and 5.13% benzylbutyl-phthalate) by gavage at 20 μg/kg, 200 μg/kg or 200 mg/kg during gestational day 10 (GD 10) to postnatal day 21 (PND 21). After weaning (PND 22), some female offspring were euthanized for mammary gland analyses while other females received a single dose of N-methyl-N-nitrosourea (MNU, 50 mg/kg) or vehicle and then tumor incidence and multiplicity were recorded until PND 180. Maternal Pth mix exposure increased the number of Ki-67 and progesterone receptor-positive epithelial cells in the mammary gland from Pth mix 200 at μg/kg and 200 mg/kg groups. In addition, tumor incidence and mean number were higher only in Pth mix at 200 mg/kg when compared to the vehicle-treated group, and percentage of tumor-free animals was lower in Pth mix at 200 μg/kg and 200 mg/kg groups. The findings indicate that perinatal Pth mixture exposure increased susceptibility to MNU-induced mammary carcinogenesis in adult F1 female offspring.Fil: de Freitas, Thiago. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Zapaterini, Joyce R.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Moreira, Cristiane M.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: de Aquino, Ariana M.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Alonso Costa, Luiz G.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bidinotto, Lucas T.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Kass, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; ArgentinaFil: Flaws, Jodi A.. University of Illinois. Urbana - Champaign; Estados UnidosFil: Scarano, Wellerson R.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Barbisan, Luis F.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasi
    corecore