972 research outputs found

    Nonparaxial shape-preserving Airy beams with Bessel signature

    Full text link
    Spatially accelerating beams that are solutions to the Maxwell equations may propagate along incomplete circular trajectories, after which diffraction broadening takes over and the beams spread out. Taking these truncated Bessel wave fields to the paraxial limit, some authors sustained that it is recovered the known Airy beams (AiBs). Based on the angular spectrum representation of optical fields, we demonstrated that the paraxial approximation rigorously leads to off-axis focused beams instead of finite-energy AiBs. The latter will arise under the umbrella of a nonparaxial approach following elliptical trajectories in place of parabolas. Deviations from full-wave simulations appear more severely in beam positioning rather than its local profile

    Radio Continuum Sources Associated with AB Aur

    Get PDF
    We present high angular resolution, high-sensitivity Very Large Array observations at 3.6 cm of the Herbig Ae star AB Aur. This star is of interest since its circumstellar disk exhibits characteristics that have been attributed to the presence of an undetected low mass companion or giant gas planet. Our image confirms the continuum emission known to exist in association with the star, and detects a faint protuberance that extends about 0.′′30\rlap.{''}3 to its SE. Previous theoretical considerations and observational results are consistent with the presence of a companion to AB Aur with the separation and position angle derived from our radio data. We also determine the proper motion of AB Aur by comparing our new observations with data taken about 17 years ago and find values consistent with those found by Hipparcos.Comment: 6 pages, 1 figur

    Light capsules shaped by curvilinear meta-surfaces

    Get PDF
    We propose a simple yet efficient method for generating in-plane hollow beams with a nearly-full circular light shell without the contribution of backward propagating waves. The method relies on modulating the phase in the near field of a centro-symmetric optical wavefront, such as that from a high-numericalaperture focused wave field. We illustrate how beam acceleration may be carried out by using an ultranarrow non-flat meta-surface formed by engineered plasmonic nanoslits. A mirrorsymmetric, with respect to the optical axis, circular caustic surface is numerically demonstrated that can be used as an optical bottle
    • …
    corecore