6 research outputs found

    Lowered serum testosterone concentration is associated with enhanced inflammation and worsened lipid profile in men

    No full text
    The negative relationship between testosterone and inflammatory cytokines has been reported for decades, although the exact mechanisms of their interactions are still not clear. At the same time, little is known about the relation between androgens and acute phase proteins. Therefore, in this investigation, we aimed to study the relationship between androgen status and inflammatory acute phase reactants in a group of men using multi-linear regression analysis. Venous blood samples were taken from 149 men ranging in age from 18 to 77 years. Gonadal androgens [testosterone (T) and free testosterone (fT)], acute phase reactants [C-reactive protein (CRP), ferritin (FER), alpha-1-acid glycoprotein (AAG), and interleukin-6 (IL-6)], cortisol (C), and lipid profile concentrations were determined. It was demonstrated that the markers of T and fT were negatively correlated with all acute phase proteins (CRP, FER, and AAG; p < 0.02) and the blood lipid profile [total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TG); p < 0.03]. Multivariate analysis showed that T, fT, and the fT/C ratio were inversely correlated with the CRP, AAG, and FER concentrations independently of age and blood lipids. When adjustment for BMI was made, T, fT, and the fT/C ratio were negatively correlated with the AAG concentrations only. In addition, it was demonstrated that gonadal androgens were positively correlated with physical activity level (p < 0.01). We have concluded that a lowered serum T concentration may promote inflammatory processes independently of adipose tissue and age through a reduced inhibition of inflammatory cytokine synthesis, which leads to enhanced acute phase protein production. Therefore, a low serum T concentration appears to be an independent risk factor in the development of atherosclerosis and cardiovascular diseases. Moreover, the positive correlation between testosterone and physical activity level suggests that exercise training attenuates the age-related decrease in gonadal androgens and, in this way, may reduce the enhancement of systemic low-grade inflammation in aging men

    Data to figures and tables

    No full text

    Endurance training increases the running performance of untrained men without changing the mitochondrial volume density in the gastrocnemius muscle

    No full text
    The activity and quantity of mitochondrial proteins and the mitochondrial volume density (Mito(VD)) are higher in trained muscles; however, the underlying mechanisms remain unclear. Our goal was to determine if 20 weeks’ endurance training simultaneously increases running performance, the amount and activity of mitochondrial proteins, and Mito(VD) in the gastrocnemius muscle in humans. Eight healthy, untrained young men completed a 20-week moderate-intensity running training program. The training increased the mean speed of a 1500 m run by 14.0% (p = 0.008) and the running speed at 85% of maximal heart rate by 9.6% (p = 0.008). In the gastrocnemius muscle, training significantly increased mitochondrial dynamics markers, i.e., peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) by 23%, mitochondrial transcription factor A (TFAM) by 29%, optic artrophy-1 (OPA1) by 31% and mitochondrial fission factor (MFF) by 44%, and voltage-dependent anion channel 1 (VDAC1) by 30%. Furthermore, training increased the amount and maximal activity of citrate synthase (CS) by 10% and 65%, respectively, and the amount and maximal activity of cytochrome c oxidase (COX) by 57% and 42%, respectively, but had no effect on the total Mito(VD) in the gastrocnemius muscle. We concluded that not Mito(VD) per se, but mitochondrial COX activity (reflecting oxidative phosphorylation activity), should be regarded as a biomarker of muscle adaptation to endurance training in beginner runners
    corecore