14 research outputs found

    RELATION BETWEEN HARDNESS OF (Ti, Al)N BASED MULTILAYERED COATINGS AND PERIODS OF THEIR STACKING

    Get PDF
    This study aims to model, by using a finite element method, the relationship between the hardness and the period Λ of metal/nitride multilayer coatings (Ti0.54Al0.46/Ti0.54Al0.46N)n in order to understand the increase of the hardness at the low periods [1] and then optimise the multilayer coating architecture to obtain the best mechanical properties. A 2D axisymmetric finite element model of the Berkovich nanoindentation test was developed. The coating was designed as a stacking of Ti0.54Al0.46 and Ti0.54Al0.46N nanolayers with, in the first hypothesis, equal thickness and perfect interface. The elastoplastic behaviours of the metal and nitride layers were identified by Berkovich nanoindentation experiments and inverse analysis on thick monolayer samples. The indentation curves (P-h) obtained by this model depend on the period Λ of the stacking. Simulated (P-h) curves were compared with experimental data on 2 ÎŒm thick films with different periods Λ ranging from 10 to 50 nm deposited by RF magnetron sputtering using reactive gas pulsing process (RGPP). The model forecasts are very consistent with the experience for the largest period but the model does not reproduce the hardness increase at the lowest periods. The Λ = 10 nm coating was analysed by electron energy loss spectroscopy (EELS) on a transmission electron microscope. Results show intermixing of the layers with the presence of nitrogen atoms in the metal layer over a few nanometers [1]. It was concluded that the metal/ceramic interface plays an important role at low periods. The addition in the model of a transition layer in the metal/nitride stacking, with an elastoplastic metal/ceramic medium behaviour, allows to reproduce the nanoindentation experimental curves. The thickness of this transition layer deduced from model updating method is in very good agreement with EELS observations

    Strain localization and anisotropic correlations in a mesoscopic model of amorphous plasticity

    Get PDF
    A mesoscopic model for shear plasticity of amorphous materials in two dimensions is introduced, and studied through numerical simulations in order to elucidate the macroscopic (large scale) mechanical behavior. Plastic deformation is assumed to occur through a series of local reorganizations. Using a discretization of the mechanical fields on a discrete lattice, local reorganizations are modeled as local slip events. Local yield stresses are randomly distributed in space and invariant in time. Each plastic slip event induces a long-ranged elastic stress redistribution. Rate and thermal effects are not discussed in the present study. Extremal dynamics allows for recovering many of the complex features of amorphous plasticity observed experimentally and in numerical atomistic simulations in the quasi-static regime. In particular, a quantitative picture of localization, and of the anisotropic strain correlation both in the initial transient regime, and in the steady state are provided. In addition, the preparation of the amorphous sample is shown to have a crucial effect of on the localization behavior

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Relation between hardness of multilayered (Ti,Al)N based coatings and periods of their stacking

    Get PDF
    International audienceThis study aims to model, by using a finite element method, the relationship between the hardness and the period Λ of metal/nitride multilayer coatings (Ti0.54Al0.46/Ti0.54Al0.46N)n in order to understand the increase of the hardness at the low periods [1] and then optimise the multilayer coating architecture to obtain the best mechanical properties. A 2D axisymmetric finite element model of the Berkovich nanoindentation test was developed. The coating was designed as a stacking of Ti0.54Al0.46 and Ti0.54Al0.46N nanolayers with, in the first hypothesis, equal thickness and perfect interface. The elastoplastic behaviours of the metal and nitride layers were identified by Berkovich nanoindentation experiments and inverse analysis on thick monolayer samples. The indentation curves (P-h) obtained by this model depend on the period Λ of the stacking. Simulated (P-h) curves were compared with experimental data on 2 ÎŒm thick films with different periods Λ ranging from 10 to 50 nm deposited by RF magnetron sputtering using reactive gas pulsing process (RGPP). The model forecasts are very consistent with the experience for the largest period but the model does not reproduce the hardness increase at the lowest periods. The Λ = 10 nm coating was analysed by electron energy loss spectroscopy (EELS) on a transmission electron microscope. Results show intermixion of the layers with the presence of nitrogen atoms in the metal layer over a few nanometers [1]. It was concluded that the metal/ceramic interface plays an important role at low periods. The addition in the model of a transition layer in the metal/nitride stacking, with an elastoplastic metal/ceramic medium behaviour, allows to reproduce the nanoindentation experimental curves. The thickness of this transition layer deduced from model updating method is in very good agreement with EELS observations

    ModĂ©lisation du lien entre la duretĂ© et la pĂ©riode d’empilement dans un revĂȘtement mĂ©tal/cĂ©ramique nano-architecturĂ© en multicouche

    No full text
    International audienceLes nitrures mĂ©talliques de titane et d’aluminium (TiAl)N sont des revĂȘtements utilisĂ©s depuis de nombreuses annĂ©es pour leurs propriĂ©tĂ©s remarquables de duretĂ© et de rĂ©sistance Ă  l’oxydation. Il a Ă©tĂ© montrĂ© que le module d’indentation et la duretĂ© de revĂȘtements Ti(1-x)AlxN dĂ©pendent de la teneur en aluminium et que les propriĂ©tĂ©s optimales sont obtenues pour x=0,46 [1,2]. Une possibilitĂ© d’amĂ©lioration de la duretĂ© de ce type de revĂȘtement est de les architecturer en multicouche mĂ©tal/cĂ©ramique. L’objectif est de modĂ©liser le lien entre la duretĂ© d’un revĂȘtement [Ti0,54Al0,46/Ti0,54Al0,46N]n et la pĂ©riode Λ de l’empilement des couches afin de comprendre les phĂ©nomĂšnes qui gĂ©nĂšrent l’augmentation de la duretĂ© aux plus faibles pĂ©riodes [3]. Un modĂšle numĂ©rique de l’essai de nanoindentation Berkovich sur des Ă©chantillons nanostratifiĂ©s a Ă©tĂ© Ă©laborĂ©. L’interface mĂ©tal/cĂ©ramique est considĂ©rĂ©e parfaite et sans Ă©paisseur. Les comportementsĂ©lastoplastiques des couches Ă©lĂ©mentaires de mĂ©tal et de cĂ©ramique ont Ă©tĂ© identifiĂ©s par nanoindentation Berkovich sur des Ă©chantillons revĂȘtus d’une seule couche. Ce modĂšle Ă©lĂ©ments finis 2D axisymĂ©trique permet d’obtenir la courbe d’indentation (P-h) pour des nanostratifiĂ©s en fonction de la pĂ©riode Λ et d’une vingtaine d’autres paramĂštres (Ă©lastoplastiques, gĂ©omĂ©triques, dimensionnels, 
). Afin de confronter ce modĂšle Ă  des expĂ©riences, des nanostratifiĂ©s d’épaisseur d’environ 2 micromĂštres de diffĂ©rentes pĂ©riodes Λ (de 10 Ă  50 nm) ont Ă©tĂ© architecturĂ©s par pulvĂ©risation rĂ©active Ă  signal de commande cyclique (RGPP) en alternant une couche Ti0,54Al0,46 et une couche Ti0,54Al0,46N. Les Ă©chantillons ainsi obtenus ont Ă©tĂ© testĂ©s par nanoindentation Berkovich. Les prĂ©visions du modĂšle sont en trĂšs bon accord avec l’expĂ©rience pour la plus grande pĂ©riode (50 nm), mais se dĂ©gradent lorsque la pĂ©riode diminue. Le modĂšle ne permet pas de reproduire l’augmentation de la duretĂ© aux plus faibles pĂ©riodes. Une analyse de sensibilitĂ© du modĂšle de la courbe d’indentation a Ă©tĂ© menĂ©e. Elle montre l’importance de la fraction volumique de cĂ©ramique dans le systĂšme bicouche mĂ©tal/cĂ©ramique et de l’écrouissage de la couche mĂ©tallique. Une analyse spectrographique par spectroscopie de perte d'Ă©nergie des Ă©lectrons au microscope Ă©lectronique Ă transmission pour la pĂ©riode Λ=10 nm a mis en Ă©vidence une proportion d’azote dans la couche mĂ©tallique sur quelques nanomĂštres, signe d’une intermixion des couches. Ces rĂ©sultats montrent que des phĂ©nomĂšnes Ă©lastoplastiques Ă  l’interface mĂ©tal/cĂ©ramique jouent un rĂŽle important aux faibles pĂ©riodes et remettent en cause l’hypothĂšse initiale d’interface parfaite et sans Ă©paisseur. Il est montrĂ© que l’ajout dans le modĂšle d’une couche de transition ayant un comportement Ă©lastoplastique moyen mĂ©tal/cĂ©ramique permet de reproduire les courbes de nanoindentation expĂ©rimentales et que l’épaisseur de cette couche est en trĂšs bon accord avec les observations spectroscopiques

    ModĂ©lisation du lien entre la duretĂ© et la pĂ©riode d’empilement dans un revĂȘtement mĂ©tal/cĂ©ramique nano-architecturĂ© en multicouche

    No full text
    International audienceLes nitrures mĂ©talliques de titane et d’aluminium (TiAl)N sont des revĂȘtements utilisĂ©s depuis de nombreuses annĂ©es pour leurs propriĂ©tĂ©s remarquables de duretĂ© et de rĂ©sistance Ă  l’oxydation. Il a Ă©tĂ© montrĂ© que le module d’indentation et la duretĂ© de revĂȘtements Ti(1-x)AlxN dĂ©pendent de la teneur en aluminium et que les propriĂ©tĂ©s optimales sont obtenues pour x=0,46 [1,2]. Une possibilitĂ© d’amĂ©lioration de la duretĂ© de ce type de revĂȘtement est de les architecturer en multicouche mĂ©tal/cĂ©ramique. L’objectif est de modĂ©liser le lien entre la duretĂ© d’un revĂȘtement [Ti0,54Al0,46/Ti0,54Al0,46N]n et la pĂ©riode Λ de l’empilement des couches afin de comprendre les phĂ©nomĂšnes qui gĂ©nĂšrent l’augmentation de la duretĂ© aux plus faibles pĂ©riodes [3]. Un modĂšle numĂ©rique de l’essai de nanoindentation Berkovich sur des Ă©chantillons nanostratifiĂ©s a Ă©tĂ© Ă©laborĂ©. L’interface mĂ©tal/cĂ©ramique est considĂ©rĂ©e parfaite et sans Ă©paisseur. Les comportementsĂ©lastoplastiques des couches Ă©lĂ©mentaires de mĂ©tal et de cĂ©ramique ont Ă©tĂ© identifiĂ©s par nanoindentation Berkovich sur des Ă©chantillons revĂȘtus d’une seule couche. Ce modĂšle Ă©lĂ©ments finis 2D axisymĂ©trique permet d’obtenir la courbe d’indentation (P-h) pour des nanostratifiĂ©s en fonction de la pĂ©riode Λ et d’une vingtaine d’autres paramĂštres (Ă©lastoplastiques, gĂ©omĂ©triques, dimensionnels, 
). Afin de confronter ce modĂšle Ă  des expĂ©riences, des nanostratifiĂ©s d’épaisseur d’environ 2 micromĂštres de diffĂ©rentes pĂ©riodes Λ (de 10 Ă  50 nm) ont Ă©tĂ© architecturĂ©s par pulvĂ©risation rĂ©active Ă  signal de commande cyclique (RGPP) en alternant une couche Ti0,54Al0,46 et une couche Ti0,54Al0,46N. Les Ă©chantillons ainsi obtenus ont Ă©tĂ© testĂ©s par nanoindentation Berkovich. Les prĂ©visions du modĂšle sont en trĂšs bon accord avec l’expĂ©rience pour la plus grande pĂ©riode (50 nm), mais se dĂ©gradent lorsque la pĂ©riode diminue. Le modĂšle ne permet pas de reproduire l’augmentation de la duretĂ© aux plus faibles pĂ©riodes. Une analyse de sensibilitĂ© du modĂšle de la courbe d’indentation a Ă©tĂ© menĂ©e. Elle montre l’importance de la fraction volumique de cĂ©ramique dans le systĂšme bicouche mĂ©tal/cĂ©ramique et de l’écrouissage de la couche mĂ©tallique. Une analyse spectrographique par spectroscopie de perte d'Ă©nergie des Ă©lectrons au microscope Ă©lectronique Ă transmission pour la pĂ©riode Λ=10 nm a mis en Ă©vidence une proportion d’azote dans la couche mĂ©tallique sur quelques nanomĂštres, signe d’une intermixion des couches. Ces rĂ©sultats montrent que des phĂ©nomĂšnes Ă©lastoplastiques Ă  l’interface mĂ©tal/cĂ©ramique jouent un rĂŽle important aux faibles pĂ©riodes et remettent en cause l’hypothĂšse initiale d’interface parfaite et sans Ă©paisseur. Il est montrĂ© que l’ajout dans le modĂšle d’une couche de transition ayant un comportement Ă©lastoplastique moyen mĂ©tal/cĂ©ramique permet de reproduire les courbes de nanoindentation expĂ©rimentales et que l’épaisseur de cette couche est en trĂšs bon accord avec les observations spectroscopiques

    Breast-Associated Adipocytes Secretome Induce Fatty Acid Uptake and Invasiveness in Breast Cancer Cells via CD36 Independently of Body Mass Index, Menopausal Status and Mammary Density

    No full text
    International audienceBreast adiposity is correlated with body mass index, menopausal status and mammary density. We here wish to establish how these factors influence the cross-talk between breast adipocytes and normal or malignant breast cells. Adipocyte-derived stem cells (ASCs) were obtained from healthy women and classified into six distinct groups based on body mass index, menopausal status and mammary density. The ASCs were induced to differentiate, and the influence of their conditioned media (ACM) was determined. Unexpectedly, there were no detectable differences in adipogenic differentiation and secretion between the six ASC groups, while their corresponding ACMs had no detectable influence on normal breast cells. In clear contrast, all ACMs profoundly influenced the proliferation, migration and invasiveness of malignant breast cells and increased the number of lipid droplets in their cytoplasm via increased expression of the fatty acid receptor CD36, thereby increasing fatty acid uptake. Importantly, inhibition of CD36 reduced lipid droplet accumulation and attenuated the migration and invasion of the breast cancer cells. These findings suggest that breast-associated adipocytes potentiate the invasiveness of breast cancer cells which, at least in part, is mediated by metabolic reprogramming via CD36-mediated fatty acid uptake
    corecore