2,791 research outputs found

    Laboratory Tests and Field Surveys to Explore the Optimum Frequency for GPR Surveys in Detecting Qanats

    Get PDF
    In this paper, we discuss the results of laboratory tests and field surveys using ground penetrating radar (GPR) method to detect qanats at the main campus of Shahid Bahonar University of Kerman (SBUK), Iran. The main purpose of laboratory experiments was to explore the optimum frequency of GPR surveys to detect qanats for the subsoil in the study site. We performed a variety of laboratory tests with a 3 GHz antenna to detect qanats (simulated using dielectric empty targets) hosted by sand with volumetric water content (VWC) values in the range 1.5-8%. The depth to each target was progressively increased until either approaching the edges of the sandbox or modelling a qanat depth for which GPR data could not detect the target anymore. The scaling factors were calculated for each test to estimate the maximum depth of detecting qanats as a function of the scaled GPR frequency. The results showed that in areas where the subsoil is dominated by sand, medium-frequency GPR antennas can penetrate to depths of a few tens of meters, but the penetration depth considerably decreases when the soil moisture and/or clay content of the medium increase. Based on the results of laboratory simulations, qanats are detectable at a maximum normalized depth of about 15-17 times of the wavelengths in very dry sands with VWC less than 5% while the detectable range rapidly drops down to less than 3 or 4 times of the wavelengths in more humid sands with VWC of about 8%. We also discuss the results of a few field GPR surveys that were measured using antennas with the 50 MHz and the 250 MHz frequencies in the northwestern part of the study area. The processed GPR images could detect a qanat in the position compatible with the results of previous remote sensing studies performed in the area. The depth to the detected qanat is 13.5 m, which is a little bit beyond the maximum limit predicted by the laboratory tests

    Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory

    Full text link
    The chameleonic behaviour of the String theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the non-equivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct Dark Energy scale is recovered in the Einstein frame (E-frame) without unnatural fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e. the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points

    Ig Glycosylation in Ulcerative Colitis: It’s Time for New Biomarkers

    Get PDF
    Background: Ulcerative colitis (UC) is a chronic relapsing disease, which needs a continue monitoring, especially during biological therapies. An increasing number of patients is treated with anti-Tumor Necrosis factor (TNF) drugs, and current research is focalized to identify biomarkers able to monitor the disease and to predict therapeutic outcome. Methods: We enrolled consecutive UC patients treated with anti-TNF, naïve to biologic drugs. Therapeutic outcome was evaluated after 54 weeks of treatment in terms of clinical remission (Partial Mayo Score -PMS- <2) and mucosal healing (Mayo Endoscopic Score <2). On serum samples collected at baseline and after 54 weeks of treatment, a Lectin-based ELISA assay was performed, and specific glycosylation patterns were evaluated by biotin-labelled lectins. We have also collected 21 healthy controls (NHS) samples, age and sex-matched. Results: Out of 44 UC patients enrolled, 22 achieved clinical remission and mucosal healing after 54 weeks. At baseline, when Protein A was used as coating, UC patients non-responders showed a reduced reactivity to Jacalin (JAC) in comparison with NHS (p = 0.04). After one year of treatment, a decrease in JAC binding was seen only in responders, in comparison with baseline (p = 0.04). When JAC binding was tested selecting IgG by means of Fab anti-IgG Fab, UC patients displayed an increased reactivity after anti-TNF therapy (p < 0,0001 vs controls). At baseline, PMS inversely correlates with JAC binding when Fab anti-IgG Fab was used in solid phase (r2 = 0,2211; p = 0,0033). Patients with higher PMS at baseline (PMS ≥5) presented lower binding capacity for JAC in comparison with NHS and with lower PMS patients (p = 0,0135 and p = 0,0089, respectively). Conclusion: Ig glycosylation was correlated with clinical and endoscopic activity in patients with UC. JAC protein A-selected Ig showed a possible role in predicting therapeutic effectiveness. If these data would be confirmed, Ig glycosylation could be used as biomarker in UC

    Neutrino Dark Energy and Moduli Stabilization in a BPS Braneworld Scenario

    Get PDF
    A braneworld model for neutrino Dark Energy (DE) is presented. We consider a five dimensional two-branes set up with a bulk scalar field motivated by supergravity. Its low-energy effective theory is derived with a moduli space approximation (MSA). The position of the two branes are parametrized by two scalar degrees of freedom (moduli). After detuning the brane tensions a classical potential for the moduli is generated. This potential is unstable for dS branes and we suggest to consider as a stabilizing contribution the Casimir energy of bulk fields. In particular we add a massive spinor (neutrino) field in the bulk and then evaluate the Casimir contribution of the bulk neutrino with the help of zeta function regularization techniques. We construct an explicit form of the 4D neutrino mass as function of the two moduli. To recover the correct DE scale for the moduli potential the usual cosmological constant fine-tuning is necessary, but, once accepted, this model suggests a stronger connection between DE and neutrino physics.Comment: 26 pages, 1 EPS figur

    Oral sucrosomial iron is as effective as intravenous ferric carboxy‐maltose in treating anemia in patients with ulcerative colitis

    Get PDF
    Anemia is a frequent complication of ulcerative colitis, and is frequently caused by iron deficiency. Oral iron supplementation displays high rates of gastrointestinal adverse effects. However, the formulation of sucrosomial iron (SI) has shown higher tolerability. We performed a prospective study to compare the effectiveness and tolerability of oral SI and intravenous ferric carboxy‐maltose (FCM) in patients with ulcerative colitis in remission and mild‐to‐moderate anemia. Patients were randomized 1:1 to receive 60 mg/day for 8 weeks and then 30 mg/day for 4 weeks of oral SI or intravenous 1000 mg of FCM at baseline. Hemoglobin and serum levels of iron and ferritin were assessed after 4, 8, and 12 weeks from baseline. Hemoglobin and serum iron increased in both groups after 4 weeks of therapy, and remained stable during follow up, without significant treatment or treatment‐by‐time interactions (p = 0.25 and p = 0.46 for hemoglobin, respectively; p = 0.25 and p = 0.26 for iron, respectively). Serum ferritin did not increase over time during SI supplementation, while it increased in patients treated with FCM (treatment effect, p = 0.0004; treatment‐bytime interaction effect, p = 0.0002). Overall, this study showed that SI and FCM displayed similar effectiveness and tolerability for treatment of mild‐to‐moderate anemia in patients with ulcerative colitis under remission

    Co-carcinogenic effects of vitamin E in prostate

    Get PDF
    A large number of basic researches and observational studies suggested the cancer preventive activity of vitamin E, but large-scale human intervention trials have yielded disappointing results and actually showed a higher incidence of prostate cancer although the mechanisms underlying the increased risk remain largely unknown. Here we show through in vitro and in vivo studies that vitamin E produces a marked inductive effect on carcinogen-bioactivating enzymes and a pro-oxidant status promoting both DNA damage and cell transformation frequency. First, we found that vitamin E in the human prostate epithelial RWPE-1 cell line has the remarkable ability to upregulate the expression of various phase-I activating cytochrome P450 (CYP) enzymes, including activators of polycyclic aromatic hydrocarbons (PAHs), giving rise to supraphysiological levels of reactive oxygen species. Furthermore, our rat model confirmed that vitamin E in the prostate has a powerful booster effect on CYP enzymes associated with the generation of oxidative stress, thereby favoring lipid-derived electrophile spread that covalently modifies proteins. We show that vitamin E not only causes DNA damage but also promotes cell transformation frequency induced by the PAH-prototype benzo[a]pyrene. Our findings might explain why dietary supplementation with vitamin E increases the prostate cancer risk among healthy men

    Fecal Calprotectin Predicts Mucosal Healing in Patients With Ulcerative Colitis Treated With Biological Therapies: A Prospective Study

    Get PDF
    INTRODUCTION: Biological therapies are widely used for the treatment of ulcerative colitis. However, only a low proportion of patients achieve clinical remission and even less mucosal healing. There is currently scarce knowledge about the early markers of therapeutic response, with particular regard to mucosal healing. The aim of this prospective study was to evaluate the role of fecal calprotectin (FC) as early predictor of mucosal healing. METHODS: A prospective observational study was conducted on patients with ulcerative colitis, who started biological therapy with infliximab, adalimumab, golimumab, or vedolizumab at our center. All patients underwent colonoscopy, performed by 2 blinded operators, at baseline and week 54 or in case of therapy discontinuation because of loss of response. FC was assessed at baseline and week 8 and evaluated as putative predictor of mucosal healing at week 54. RESULTS: We enrolled 109 patients, and 97 were included in the analysis. Twenty-six patients (27%) experienced loss of response. Over 71 patients (73%) with clinical response at week 54, clinical remission was obtained in 60 patients (61.9%) and mucosal healing in 45 patients (46.4%). After 8 weeks of treatment, FC predicted mucosal healing at week 54 (P < 0.0001). Sensitivity, specificity, positive predictive value, and negative predictive value were estimated to be 75%, 88.9%, 86.6%, and 75.5%, respectively, based on a cutoff of 157.5 mg/kg. DISCUSSION: The present study suggests that FC assessment after 8 weeks of treatment with all the biological drugs could represent a promising early marker of response to therapy in terms of mucosal healing
    corecore