36 research outputs found

    Advanced carbon nanomaterials for electrochemiluminescent biosensor applications

    Get PDF
    Electrochemiluminescent biosensors are nowadays an established technology in the field of immunosensors and diagnostics. Along with the advent of nanotechnology, the marriage between electrochemiluminescence and nanomaterials results in promising enhancing strategies in many biosensor applications. Among nanomaterials, carbon-based ones are the most used, as (i)scaffolds, (ii)luminophores and (iii)electrode materials of the sensor. In this review, we describe the importance of a rational modification and functionalization of carbon nanomaterials to optimize electrochemiluminescence signal, and we also resume the latest and most relevant applications of electrochemiluminescent biosensors based on carbon nanomaterials

    DNA-based nanoswitches: insights into electrochemiluminescence signal enhancement

    Get PDF
    Electrochemiluminescence (ECL) is a powerful transduction technique that has rapidly gained importance as a powerful analytical technique. Since ECL is a surfaceconfined process, a comprehensive understanding of the generation of ECL signal at a nanometric distance from the electrode could lead to several highly promising applications. In this work, we explored the mechanism underlying ECL signal generation on the nanoscale using luminophore-reporter-modified DNA-based nanoswitches (i.e., molecular beacon) with different stem stabilities. ECL is generated according to the "oxidative-reduction" strategy using tri-n-propylamine (TPrA) as a coreactant and Ru(bpy)(3)(2+) as a luminophore. Our findings suggest that by tuning the stem stability of DNA nanoswitches we can activate different ECL mechanisms (direct and remote) and, under specific conditions, a "digital-like" association curve, i.e., with an extremely steep transition after the addition of increasing concentrations of DNA target, a large signal variation, and low preliminary analytical performance (LOD 22 nM for 1GC DNA-nanoswtich and 16 nM for 5GC DNA-nanoswitch). In particular, we were able to achieve higher signal gain (i.e., 10 times) with respect to the standard "signal-off" electrochemical readout. We demonstrated the copresence of two different ECL generation mechanisms on the nanoscale that open the way for the design of customized DNA devices for highly efficient dual-signal-output ratiometric-like ECL systems

    Lighting up the Electrochemiluminescence of Carbon Dots through Pre- and Post-Synthetic Design

    Get PDF
    Carbon dots (CDs), defined by their size of less than 10\ua0nm, are a class of photoluminescent (PL) and electrochemiluminescent (ECL) nanomaterials that include a variety of carbon-based nanoparticles. However, the control of their properties, especially ECL, remains elusive and afflicted by a series of problems. Here, the authors report CDs that display ECL in water via coreactant ECL, which is the dominant mechanism in biosensing applications. They take advantage of a multicomponent bottom-up approach for preparing and studying the luminescence properties of CDs doped with a dye acting as PL and ECL probe. The dependence of luminescence properties on the surface chemistry is further reported, by investigating the PL and ECL response of CDs with surfaces rich in primary, methylated, or propylated amino groups. While precursors that contribute to the core characterize the PL emission, the surface states influence the efficiency of the excitation-dependent PL emission. The ECL emission is influenced by surface states from the organic shell, but states of the core strongly interact with the surface, influencing the ECL efficiency. These findings offer a framework of pre- and post-synthetic design strategies to improve ECL emission properties, opening new opportunities for exploring biosensing applications of CDs

    Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance

    Get PDF
    Electrochemiluminescence (ECL) is a powerful transduction technique with a leading role in the biosensing field due to its high sensitivity and low background signal. Although the intrinsic analytical strength of ECL depends critically on the overall efficiency of the mechanisms of its generation, studies aimed at enhancing the ECL signal have mostly focused on the investigation of materials, either luminophores or coreactants, while fundamental mechanistic studies are relatively scarce. Here, we discover an unexpected but highly efficient mechanistic path for ECL generation close to the electrode surface (signal enhancement, 128%) using an innovative combination of ECL imaging techniques and electrochemical mapping of radical generation. Our findings, which are also supported by quantum chemical calculations\ua0and spin trapping methods, led to the identification of a family of alternative branched amine coreactants, which raises the analytical strength of ECL well beyond that of present state-of-the-art immunoassays, thus creating potential ECL applications in ultrasensitive bioanalysis

    Patterns of geographical distribution of toxigenic cyanobacterial species and oligotypes in the perialpine lake district

    Get PDF
    Eco-AlpsWater (EAW) is a major European project co-financed by the European Regional Development Fund (ERDF) through the Interreg Alpine Space program (www.alpine-space.eu/projects/eco-alpswater). The aim of the initiative is to integrate traditional water monitoring approaches implemented in the Alpine region and in Europe (Water Framework Directive-WFD) with high throughput sequencing technologies (HTS). In this work we will present the rationale and results obtained in the Italian hydrographic network, with a focus on large subalpine lakes and cyanobacterial communities determined on samples collected in pelagic areas and rocky-shore biofilms (Lake Garda). Overall, the pelagic and biofilm samples showed distinct communities, with only a few shared species and oligotypes (amplicon sequence variants) mostly belonging to the Chroococcales. One of the most widespread pelagic species in the Italian district and the whole Alpine region was Planktothrix rubescens. In contrast, Tychonema bourrellyi showed consistent populations only in the southern subalpine lake district. The normalized DNA sequence abundances of these two species were highly correlated with the microcystin and anatoxin-a concentrations, demonstrating a high consistency of the results obtained by HTS and metabolomic profiling, and a high ability of HTS to predict the toxigenic potential due to the production of hepatotoxins and neurotoxins in inland waters

    NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    Get PDF
    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases

    Nanoelectrode Arrays Fabricated by Thermal Nanoimprint Lithography for Biosensing Application

    No full text
    Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5-10 μg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications

    Nanoelectrode Arrays Fabricated by Thermal Nanoimprint Lithography for Biosensing Application

    No full text
    Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5–10 µg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications

    Chapter 6: The Essential Role of Electrode Materials in ECL Applications

    No full text
    Electrochemiluminescence (ECL) is a phenomenon that occurs in the proximity of the electrode surface, since the radicals involved in the formation of the light-emitting excited states are generated after an electrochemical stimulus. The choice of the electrode material is crucial for the light generation, because it influences the kinetic of the heterogeneous electron transfer reaction. For this reason, the deep understanding of the whole ECL system, of the relative target application under development, is of fundamental importance for the proper choice of the electrode material. In the present chapter, different electrode materials are reported for different ECL applications, ranging from noble gold electrodes, through transparent electrodes for ECL and microscopy techniques combination, to carbon-based electrodes, which present fast kinetics for coreactant oxidation. Their electrochemical behaviour and their ECL efficiencies have been reported mainly with [Ru(bpy)3]2+/TPrA coreactant system in \u201coxidative-reduction\u201d mechanism, but other coreactants have been used, such as peroxydisulfate and benzoyl peroxide in \u201creductive-oxidation\u201d mechanism. A comprehensive and exhaustive electrochemical study of the above-written materials will be presented in the next pages

    Electrochemiluminescence as emerging microscopy techniques

    No full text
    The use of electrochemiluminescence (ECL), i.e., chemiluminescence triggered by electrochemical stimulus, as emitting light source for microscopy is an emerging approach with different applications ranging from the visualization of nanomaterials to cell mapping. In this trend article, we give an overview of the state of the art in this new field with the purpose to illustrate all the possible applications so far explored as well as describing the mechanism underlying this transduction technique. The results discussed here would highlight the great potential of the combination between ECL and microscopy and how this marriage can turn into an innovative approach with specific application in analytical sciences. [Figure not available: see fulltext.]
    corecore