453 research outputs found

    Salt-gradient Solar Ponds: Summary of US Department of Energy Sponsored Research

    Get PDF
    The solar pond research program conducted by the United States Department of Energy was discontinued after 1983. This document summarizes the results of the program, reviews the state of the art, and identifies the remaining outstanding issues. Solar ponds is a generic term but, in the context of this report, the term solar pond refers specifically to saltgradient solar pond. Several small research solar ponds have been built and successfully tested. Procedures for filling the pond, maintaining the gradient, adjusting the zone boundaries, and extracting heat were developed. Theories and models were developed and verified. The major remaining unknowns or issues involve the physical behavior of large ponds; i.e., wind mixing of the surface, lateral range or reach of horizontally injected fluids, ground thermal losses, and gradient zone boundary erosion caused by pumping fluid for heat extraction. These issues cannot be scaled and must be studied in a large outdoor solar pond

    Fire and climate: Biomass burning recorded in ice and lake cores

    Get PDF
    Human activities including fossil fuel burning are currently altering the global climate system at rates faster than ever recorded in geologic time. Biomass burning causes carbon dioxide emissions equal to 50% of those from fossil-fuel combustion and so are highly likely to influence future climate change. However, aerosols continue to be one of the least understood aspects of the modern climate system and even less is known about their past influence. Ice and lake core proxy records provide quantifiable data on past fire regimes across most spatial and temporal scales. Some monosaccharide anhydrides such as levoglucosan, mannosan and galactosan are used as specific molecular markers for biomass burning as they can only be produced by combustion processes at temperatures greater than 300 °C and are present in both ice and lake cores. Other paleofire tracers such as microcharcoal, polycyclic aromatic hydrocarbons, and pollen records augment the fire history derived at single sites or across regions. As both pyrochemical and climate parameters are determined from the same depth and time within the ice or sediment matrix, the multi-proxy nature of ice and lake cores presents an ideal material to investigate the links between fires and climate change

    Measurement of salinity distributions in salt‐stratified, double‐diffusive systems by optical deflectometry

    Get PDF
    This is the published version. Copyright © 1986 American Institute of PhysicsReliable salinity measurements in double‐diffusive thermohaline solutions are necessary to understand relevant system behavior. An optical technique, which has previously been used to investigate solutediffusion in isothermal systems, is employed to measure the salinity distribution in a double‐diffusive thermohaline system. The technique is verified by comparison with independent salinity measurements, and its use in a double‐diffusive system reveals detailed salinity distribution information. When used with the shadowgraph method of flow visualization, the salinity measurement technique permits a more quantitative interpretation of the shadowgraphic results

    The CMS Event Builder

    Full text link
    The data acquisition system of the CMS experiment at the Large Hadron Collider will employ an event builder which will combine data from about 500 data sources into full events at an aggregate throughput of 100 GByte/s. Several architectures and switch technologies have been evaluated for the DAQ Technical Design Report by measurements with test benches and by simulation. This paper describes studies of an EVB test-bench based on 64 PCs acting as data sources and data consumers and employing both Gigabit Ethernet and Myrinet technologies as the interconnect. In the case of Ethernet, protocols based on Layer-2 frames and on TCP/IP are evaluated. Results from ongoing studies, including measurements on throughput and scaling are presented. The architecture of the baseline CMS event builder will be outlined. The event builder is organised into two stages with intelligent buffers in between. The first stage contains 64 switches performing a first level of data concentration by building super-fragments from fragments of 8 data sources. The second stage combines the 64 super-fragments into full events. This architecture allows installation of the second stage of the event builder in steps, with the overall throughput scaling linearly with the number of switches in the second stage. Possible implementations of the components of the event builder are discussed and the expected performance of the full event builder is outlined.Comment: Conference CHEP0

    Five thousand years of fire history in the high North Atlantic region: Natural variability and ancient human forcing

    Get PDF
    Biomass burning influences global atmospheric chemistry by releasing greenhouse gases and climate-forcing aerosols. There is controversy about the magnitude and timing of Holocene changes in biomass burning emissions from millennial to centennial timescales and, in particular, about the possible impact of ancient civilizations. Here we present a 5gkyr record of fire activity proxies levoglucosan, black carbon, and ammonium measured in the RECAP (Renland ice cap) ice core, drilled in coastal eastern Greenland, and therefore affected by processes occurring in the high North Atlantic region. Levoglucosan and ammonium fluxes are high from 5 to 4.5gkyrgBP (thousand years before 2000gCE) followed by an abrupt decline, possibly due to monotonic decline in Northern Hemisphere summer insolation. Levoglucosan and black carbon show an abrupt decline at 1.1gkyrgBP, suggesting a decline in the wildfire regime in Iceland due to the extensive land clearing caused by Viking colonizers. All fire proxies reach a minimum during the second half of the last century, after which levoglucosan and ammonium fluxes increase again, in particular over the last 200 years. We find that the fire regime reconstructed from RECAP fluxes seems mainly related to climatic changes; however over the last millennium human activities might have influenced wildfire frequency/occurrence substantially

    All-optical spin injection in silicon investigated by element-specific time-resolved Kerr effect

    Get PDF
    Understanding howa spin current flows across metal-semiconductor interfaces at pico- and femtosecond time scales is of paramount importance for ultrafast spintronics, data processing, and storage applications. However, the possibility to directly access the propagation of spin currents, within such time scales, has been hampered by the simultaneous lack of both ultrafast element-specific magnetic sensitive probes and tailoredwell-built and characterized metal-semiconductor interfaces. Here, by means of a novel free-electron laser-based element-sensitive ultrafast time-resolved Kerr spectroscopy, we reveal different magnetodynamics for the Ni M-2;3 and Si L-2;3 absorption edges. These results are assumed to be the experimental evidence of photoinduced spin currents propagating at a speed of similar to 0.2 nm/fs across the Ni/Si interface
    • 

    corecore