4,585 research outputs found

    Shock-fitted Euler solutions to shock-vortex interactions

    Get PDF
    The interaction of a shock wave with a hot spot, a single vortex and a vortex street is studied within the framework of the two dimensional compressible Euler equations. The numerical results obtained by the pseudospectral method and the finite difference MacCormack method are compared. In both the methods the shock wave is fitted as a boundary of the computational domain

    Quantum Manifestation of Elastic Constants in Nanostructures

    Full text link
    Generally, there are two distinct effects in modifying the properties of low-dimensional nanostructures: surface effect (SS) due to increased surface-volume ratio and quantum size effect (QSE) due to quantum confinement in reduced dimension. The SS has been widely shown to affect the elastic constants and mechanical properties of nanostructures. Here, using Pb nanofilm and graphene nanoribbon as model systems, we demonstrate the QSE on the elastic constants of nanostructures by first-principles calculations. We show that generally QSE is dominant in affecting the elastic constants of metallic nanostructures while SS is more pronounced in semiconductor and insulator nanostructures. Our findings have broad implications in quantum aspects of nanomechanics

    Low Temperature Magnetic Properties of the Double Exchange Model

    Full text link
    We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener to explain ferromagnetism has unexpected properties when there is more than one itinerant electron. We find that, in general, the many-body ground state of the DE model is {\it not} globally FM ordered (except for special filled-shell cases). Also, the low energy excitations of this model are distinct from spin wave excitations in usual Heisenberg ferromagnets, which will result in unusual dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include

    On the soliton width in the incommensurate phase of spin-Peierls systems

    Full text link
    We study using bosonization techniques the effects of frustration due to competing interactions and of the interchain elastic couplings on the soliton width and soliton structure in spin-Peierls systems. We compare the predictions of this study with numerical results obtained by exact diagonalization of finite chains. We conclude that frustration produces in general a reduction of the soliton width while the interchain elastic coupling increases it. We discuss these results in connection with recent measurements of the soliton width in the incommensurate phase of CuGeO_3.Comment: 4 pages, latex, 2 figures embedded in the tex

    Mutational analyses of the cysteine-rich domain of Yvh1, a protein required for translational competency in yeast

    Get PDF
    Ribosome assembly is a complex biological process facilitated by \u3e20

    Charge Localization in Disordered Colossal-Magnetoresistance Manganites

    Full text link
    The metallic or insulating nature of the paramagnetic phase of the colossal-magnetoresistance manganites is investigated via a double exchange Hamiltonian with diagonal disorder. Mobility edge trajectory is determined with the transfer matrix method. Density of states calculations indicate that random hopping alone is not sufficient to induce Anderson localization at the Fermi level with 20-30% doping. We argue that the metal-insulator transtion is likely due to the formation of localized polarons from nonuniform extended states as the effective band width is reduced by random hoppings and electron-electron interactions.Comment: 4 pages, RevTex. 4 Figures include

    Molecular-field approach to the spin-Peierls transition in CuGeO_3

    Full text link
    We present a theory for the spin-Peierls transition in CuGeO_3. We map the elementary excitations of the dimerized chain (solitons) on an effective Ising model. Inter-chain coupling (or phonons) then introduce a linear binding potential between a pair of soliton and anti-soliton, leading to a finite transition temperature. We evaluate, as a function of temperature, the order parameter, the singlet-triplet gap, the specific heat, and the susceptibility and compare with experimental data on CuGeO_3. We find that CuGeO_3 is close to a first-order phase transition. We point out, that the famous scaling law \sim\delta^{2/3} of the triplet gap is a simple consequence of the linear binding potential between pairs of solitons and anti-solitons in dimerized spin chains.Comment: 7.1 pages, figures include
    • …
    corecore