4,561 research outputs found
Decreasing erucic acid level by RNAi-mediated silencing of fatty acid elongase 1 (BnFAE1.1) in rapeseeds (Brassica napus L.)
The β-ketoacyl CoA synthase encoded by fatty acid elongase 1 gene (BnFAE1.1) is a rate-limiting enzyme regulating biosynthesis of erucic acid in rapeseeds (Brassica napus). To develop low level of erucic acid in rapeseeds by intron-spliced hairpin RNA, an inverted repeat unit of a partial BnFAE1.1 gene interrupted by a spliceable intron was cloned into pCAMBIA3301, and a seed-specific (Napin) promoter was used to control the transcription of the transgene. Four transgenic plants harboring a single copy of transgene were generated. Expression of endogenous BnFAE1.1 gene in developing T3 seeds was significantly reduced. In mature T3 seeds, erucic acid was decreased by 60.8 to 99.1% compared with wild type seeds, and accounted for 0.36 to 15.56% of total fatty acids. The level of eicosenoic acid was also greatly decreased. Furthermore, it resulted in a significant increase in the level of oleic acid, but total fatty acid content in T3 seeds was the same with that in wild type seeds. In conclusion, the expression of endogenous BnFAE1.1 was efficiently silenced by the designed RNAi silencer, causing a significant down-regulation in the level of erucic acid. Therefore, the RNAi-mediated post-transcriptional silencing of FAE1 gene to reduce oleic acid in rapeseeds was an efficient method to breed some new B. napus lines.Key words: Brassica napus L., fatty acid elongase, intron-spliced hairpin RNA, down-regulation, erucic acid
Building block libraries and structural considerations in the self-assembly of polyoxometalate and polyoxothiometalate systems
Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems
Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs
In a composite system of gravitationally coupled stellar and gaseous discs,
we perform linear stability analysis for axisymmetric coplanar perturbations
using the two-fluid formalism. The background stellar and gaseous discs are
taken to be scale-free with all physical variables varying as powers of
cylindrical radius with compatible exponents. The unstable modes set in as
neutral modes or stationary perturbation configurations with angular frequency
.Comment: 7 pages using AAS styl
Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening
A series of Ti-25Nb-8Zr-xCr (x = 0, 2, 4, 6, 8 wt%) alloys were designed based on DV-Xα cluster method and e=a-Δr diagram with an anticipation to obtain high plasticity and significant strain hardening. The designed alloys were produced through cold crucible levitation melting technique in order to effectively investigate their micro-structures and mechanical properties. The addition of Cr significantly enhances the β stability in the microstructures of the Ti-25Nb-8Zr-xCr alloys. Both yield strength and hardness of the studied alloys increase due to the effect of solid-solution strengthening. By contrast, the plasticity, maximum strength and strain hardening rate are influenced by theβstability as well as the distinct deformation mechanisms. None of the alloys comprising Cr fail up to 100 kN (the load capacity used) and all show impressive plasticity (~75%) and superior maximum compressive strength (~4.5 GPa) at 100 kN. Moreover, the deformation bands, which are found around the hardness indentations, are analyzed for all the investigated alloys. The fracture behaviors of the Ti-25Nb-8Zr-xCr alloys are also studied to observe the characteristics related to crack propagation, plastic deformation and the formation of shear bands
Competing energy scales in topological superconducting heterostructures
Artificially engineered topological superconductivity has emerged as a viable route to create Majorana modes. In this context, proximity-induced super-conductivity in materials with a sizable spin-orbit coupling has been intensively investigated in recent years. Although there is convincing evidence that superconductivity may indeed be induced, it has been difficult to elucidate its topological nature. Here, we engineer an artificial topological superconductor by progressively introducing superconductivity (Nb), strong spin-orbital coupling (Pt), and topological states (Bi2Te3). Through spectroscopic imaging of superconducting vortices within the bare s-wave superconducting Nb and within proximitized Pt and Bi2Te3 layers, we detect the emergence of a zero-bias peak that is directly linked to the presence of topological surface states. Our results are rationalized in terms of competing energy trends which are found to impose an upper limit to the size of the minigap separating Majorana and trivial modes, its size being ultimately linked to fundamental materials properties
- …