7,748 research outputs found

    Short form of the changes in outlook questionnaire: translation and validation of the Chinese version

    Get PDF
    Background: The Changes in Outlook Questionnaire (CiOQ) is a self-report instrument designed to measure both positive and negative changes following the experience of severely stressful events. Previous research has focused on the Western context. The aim of this study is to translate the short form of the measure (CiOQ-S) into simplified Chinese and examine its validity and reliability in a sample of Chinese earthquake survivors. Method: The English language version of the 10-item CiOQ was translated into simplified Chinese and completed along with other measures in a sample of earthquake survivors (n = 120). Statistical analyses were performed to explore the structure of the simplified Chinese version of CiOQ-S (CiOQ-SCS), its reliability and validity. Results: Principal components analysis (PCA) was conducted to test the structure of the CiOQ-SCS. The reliability and convergent validity were also assessed. The CiOQ-SCS demonstrated a similar factor structure to the English version, high internal consistency and convergent validity with measures of posttraumatic stress symptoms, anxiety and depression, coping and social support. Conclusion: The data are comparable to those reported for the original version of the instrument indicating that the CiOQ-SCS is a reliable and valid measure assessing positive and negative changes in the aftermath of adversity. However, the sampling method cannot permit us to know how representative our samples were of the earthquake survivor population

    Resolution requirements for numerical simulations of transition

    Get PDF
    The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition

    Spectral multigrid methods for elliptic equations 2

    Get PDF
    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included

    Low Temperature Magnetic Properties of the Double Exchange Model

    Full text link
    We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener to explain ferromagnetism has unexpected properties when there is more than one itinerant electron. We find that, in general, the many-body ground state of the DE model is {\it not} globally FM ordered (except for special filled-shell cases). Also, the low energy excitations of this model are distinct from spin wave excitations in usual Heisenberg ferromagnets, which will result in unusual dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include

    Interchain Coupling Effects and Solitons in CuGeO_3

    Full text link
    The effects of interchain coupling on solitons and soliton lattice structures in CuGeO3 are explored. It is shown that interchain coupling substantially increases the soliton width and changes the soliton lattice structures in the incommensurate phase. It is proposed that the experimentally observed large soliton width in CuGeO3 is mainly due to interchain coupling effects.Comment: 4 pages, LaTex, one eps figure included. No essential changes except forma

    Approximation of 2D Euler Equations by the Second-Grade Fluid Equations with Dirichlet Boundary Conditions

    Full text link
    The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: α>0\alpha > 0, corresponding to the elastic response, and ν>0\nu > 0, corresponding to viscosity. Formally setting these parameters to 00 reduces the equations to the incompressible Euler equations of ideal fluid flow. In this article we study the limits α,ν0\alpha, \nu \to 0 of solutions of the second-grade fluid system, in a smooth, bounded, two-dimensional domain with no-slip boundary conditions. This class of problems interpolates between the Euler-α\alpha model (ν=0\nu = 0), for which the authors recently proved convergence to the solution of the incompressible Euler equations, and the Navier-Stokes case (α=0\alpha = 0), for which the vanishing viscosity limit is an important open problem. We prove three results. First, we establish convergence of the solutions of the second-grade model to those of the Euler equations provided ν=O(α2)\nu = \mathcal{O}(\alpha^2), as α0\alpha \to 0, extending the main result in [19]. Second, we prove equivalence between convergence (of the second-grade fluid equations to the Euler equations) and vanishing of the energy dissipation in a suitably thin region near the boundary, in the asymptotic regime ν=O(α6/5)\nu = \mathcal{O}(\alpha^{6/5}), ν/α2\nu/\alpha^2 \to \infty as α0\alpha \to 0. This amounts to a convergence criterion similar to the well-known Kato criterion for the vanishing viscosity limit of the Navier-Stokes equations to the Euler equations. Finally, we obtain an extension of Kato's classical criterion to the second-grade fluid model, valid if α=O(ν3/2)\alpha = \mathcal{O}(\nu^{3/2}), as ν0\nu \to 0. The proof of all these results relies on energy estimates and boundary correctors, following the original idea by Kato.Comment: 20pages,1figur

    Coupling Matrix Representation of Nonreciprocal Filters Based on Time Modulated Resonators

    Get PDF
    This paper addresses the analysis and design of non-reciprocal filters based on time modulated resonators. We analytically show that time modulating a resonator leads to a set of harmonic resonators composed of the unmodulated lumped elements plus a frequency invariant element that accounts for differences in the resonant frequencies. We then demonstrate that harmonic resonators of different order are coupled through non-reciprocal admittance inverters whereas harmonic resonators of the same order couple with the admittance inverter coming from the unmodulated filter network. This coupling topology provides useful insights to understand and quickly design non-reciprocal filters and permits their characterization using an asynchronously tuned coupled resonators network together with the coupling matrix formalism. Two designed filters, of orders three and four, are experimentally demonstrated using quarter wavelength resonators implemented in microstrip technology and terminated by a varactor on one side. The varactors are biased using coplanar waveguides integrated in the ground plane of the device. Measured results are found to be in good agreement with numerical results, validating the proposed theory

    Convergence of the 2D Euler-α\alpha to Euler equations in the Dirichlet case: indifference to boundary layers

    Get PDF
    In this article we consider the Euler-α\alpha system as a regularization of the incompressible Euler equations in a smooth, two-dimensional, bounded domain. For the limiting Euler system we consider the usual non-penetration boundary condition, while, for the Euler-α\alpha regularization, we use velocity vanishing at the boundary. We also assume that the initial velocities for the Euler-α\alpha system approximate, in a suitable sense, as the regularization parameter α0\alpha \to 0, the initial velocity for the limiting Euler system. For small values of α\alpha, this situation leads to a boundary layer, which is the main concern of this work. Our main result is that, under appropriate regularity assumptions, and despite the presence of this boundary layer, the solutions of the Euler-α\alpha system converge, as α0\alpha \to 0, to the corresponding solution of the Euler equations, in L2L^2 in space, uniformly in time. We also present an example involving parallel flows, in order to illustrate the indifference to the boundary layer of the α0\alpha \to 0 limit, which underlies our work.Comment: 22page
    corecore