602 research outputs found

    Sparse Vector Autoregressive Modeling

    Full text link
    The vector autoregressive (VAR) model has been widely used for modeling temporal dependence in a multivariate time series. For large (and even moderate) dimensions, the number of AR coefficients can be prohibitively large, resulting in noisy estimates, unstable predictions and difficult-to-interpret temporal dependence. To overcome such drawbacks, we propose a 2-stage approach for fitting sparse VAR (sVAR) models in which many of the AR coefficients are zero. The first stage selects non-zero AR coefficients based on an estimate of the partial spectral coherence (PSC) together with the use of BIC. The PSC is useful for quantifying the conditional relationship between marginal series in a multivariate process. A refinement second stage is then applied to further reduce the number of parameters. The performance of this 2-stage approach is illustrated with simulation results. The 2-stage approach is also applied to two real data examples: the first is the Google Flu Trends data and the second is a time series of concentration levels of air pollutants.Comment: 39 pages, 7 figure

    Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter

    Get PDF
    The high cost of power generation impedes commercial-scale wave power operations. The objective of this work is to provide a cost-sharing solution by combining wave energy extraction and coastal protection. A two-dimensional numerical wave tank was developed using Star-CCM+ Computational Fluid Dynamics software to investigate the hydrodynamic performance of a dual-floater hybrid system consisting of a floating breakwater and an oscillating-buoy type wave energy converter (WEC), and was compared with published experimental results. The differences between the hydrodynamic performance of the hybrid system, a single WEC and a single breakwater were compared. Wave resonance in the WEC-breakwater gap has a significant impact on system performance, with the hybrid system demonstrating both better wave attenuation and wave energy extraction capabilities at low wave frequencies, i.e., wider effective frequency. Forces on the breakwater were generally reduced due to the WEC. Wave resonance in the narrow gap has an adverse effect on the energy efficiency of the hybrid system with an asymmetric WEC, while a beneficial effect with a symmetric WEC. The wave energy conversion efficiency of hybrid system can be improved by increasing the draft and width of the WEC and decreasing the distance between the WEC and the breakwater. The findings of this paper make wave energy economically competitive and commercial-scale wave power operations possible

    Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter

    Get PDF
    The high cost of power generation impedes commercial-scale wave power operations. The objective of this work is to provide a cost-sharing solution by combining wave energy extraction and coastal protection. A two-dimensional numerical wave tank was developed using Star-CCM+ Computational Fluid Dynamics software to investigate the hydrodynamic performance of a dual-floater hybrid system consisting of a floating breakwater and an oscillating-buoy type wave energy converter (WEC), and was compared with published experimental results. The differences between the hydrodynamic performance of the hybrid system, a single WEC and a single breakwater were compared. Wave resonance in the WEC-breakwater gap has a significant impact on system performance, with the hybrid system demonstrating both better wave attenuation and wave energy extraction capabilities at low wave frequencies, i.e., wider effective frequency. Forces on the breakwater were generally reduced due to the WEC. Wave resonance in the narrow gap has an adverse effect on the energy efficiency of the hybrid system with an asymmetric WEC, while a beneficial effect with a symmetric WEC. The wave energy conversion efficiency of hybrid system can be improved by increasing the draft and width of the WEC and decreasing the distance between the WEC and the breakwater. The findings of this paper make wave energy economically competitive and commercial-scale wave power operations possible

    Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter

    Get PDF
    Combined floating breakwater and wave energy converter systems have the potential to provide a cost-effective solution to offshore power supply and coastal protection. This will make wave energy economically competitive and commercial-scale wave power operations possible. This paper investigates the hydrodynamic features of wave energy converters that meet the dual objectives of wave energy extraction and attenuation for such a combined system. A two-dimensional numerical model was established using Star-CCM+ commercial software based on viscous Computational Fluid Dynamics theory to investigate the hydrodynamic performance of an oscillating buoy Wave Energy Converter (WEC) type floating breakwater under regular waves. The model proposed in this paper was verified with published experimental results. The hydrodynamics of symmetric and asymmetric floaters were investigated to demonstrate their wave attenuation and energy extraction performance, including square bottomed, triangular bottomed (with and without a baffle plate), and the Berkley Wedge. The asymmetric floaters were found to have higher power conversion efficiency and better wave attenuation performance, especially the Berkeley Wedge bottom device and the triangular-baffle bottom device. The triangular-baffle bottom device with a simpler geometry achieved similar wave attenuation and energy extraction performance characteristics to that of the Berkeley Wedge device. The maximum energy conversion efficiency of the triangular-baffle bottom floater reached up to 93%, an impressive WEC device among many designs for wave energy conversion. There may be a great potential for this newly proposed triangular-baffle bottom WEC type of floater to be an ideal coastal structure for both coastal protection and wave energy extraction

    KMT-2016-BLG-1107: A New Hollywood-Planet Close/Wide Degeneracy

    Get PDF
    We show that microlensing event KMT-2016-BLG-1107 displays a new type of degeneracy between wide-binary and close-binary Hollywood events in which a giant-star source envelops the planetary caustic. The planetary anomaly takes the form of a smooth, two-day "bump" far out on the falling wing of the light curve, which can be interpreted either as the source completely enveloping a minor-image caustic due to a close companion with mass ratio q=0.036q=0.036, or partially enveloping a major-image caustic due to a wide companion with q=0.004q=0.004. The best estimates of the companion masses are both in the planetary regime (3.3−1.8+3.5 Mjup3.3^{+3.5}_{-1.8}\,M_{\rm jup} and 0.090−0.037+0.096 Mjup0.090^{+0.096}_{-0.037}\,M_{\rm jup}) but differ by an even larger factor than the mass ratios due to different inferred host masses. We show that the two solutions can be distinguished by high-resolution imaging at first light on next-generation ("30m") telescopes. We provide analytic guidance to understand the conditions under which this new type of degeneracy can appear.Comment: 23 pages, 7 figures, accepted for publication in A

    Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters

    Get PDF
    Combined floating offshore wind platform and Wave Energy Converters (WECs) systems have the potential to provide a cost-effective solution to offshore power supply and platform protection. The objective of this paper is to optimize the size and layout of WECs within the hybrid system under a given sea state with a numerical study. The numerical model was developed based on potential flow theory with viscous correction in frequency domain to investigate the hydrodynamic performance of a hybrid system consisting of a floating platform and multiple heaving WECs. A non-dimensional method was presented to determine a series of variables, including radius, draft, and layout of the cylindrical WEC at a typical wave frequency as the initial design. WECs with larger diameter to draft ratio were found to experience relatively smaller viscous effects, and achieve more wave power, larger effective frequency range and similar wave power per unit weight compared with those with the smaller diameter to draft ratio in the same sea state. The addition of WECs reduced the maximum horizontal force and pitch moment on the platform, whereas the maximum vertical force increased due to the increasing power take-off force, especially at low frequencies. The results presented in this paper provide guidance for the optimized design of WECs and indicate the potential for synergies between wave and wind energy utilization on floating platforms

    KMT-2018-BLG-1990Lb: A Nearby Jovian Planet From A Low-Cadence Microlensing Field

    Get PDF
    We report the discovery and characterization of KMT-2018-BLG-1990Lb, a Jovian planet (mp=0.57−0.25+0.79 MJ)(m_p=0.57_{-0.25}^{+0.79}\,M_J) orbiting a late M dwarf (M=0.14−0.06+0.20 M⊙)(M=0.14_{-0.06}^{+0.20}\,M_\odot), at a distance (D_L=1.23_{-0.43}^{+1.06}\,\kpc), and projected at 2.6±0.62.6\pm 0.6 times the snow line distance, i.e., a_{\rm snow}\equiv 2.7\,\au (M/M_\odot), This is the second Jovian planet discovered by KMTNet in its low cadence (0.4 hr−10.4\,{\rm hr}^{-1}) fields, demonstrating that this population will be well characterized based on survey-only microlensing data.Comment: 24 pages, 7 figures, 4 table

    KMT-2018-BLG-1292: A Super-Jovian Microlens Planet in the Galactic Plane

    Get PDF
    We report the discovery of KMT-2018-BLG-1292Lb, a super-Jovian Mplanet=4.5±1.3 MJM_{\rm planet} = 4.5\pm 1.3\,M_J planet orbiting an F or G dwarf Mhost=1.5±0.4 M⊙M_{\rm host} = 1.5\pm 0.4\,M_\odot, which lies physically within {\cal O}(10\,\pc) of the Galactic plane. The source star is a heavily extincted AI∼5.2A_I\sim 5.2 luminous giant that has the lowest Galactic latitude, b=−0.28∘b=-0.28^\circ, of any planetary microlensing event. The relatively blue blended light is almost certainly either the host or its binary companion, with the first explanation being substantially more likely. This blend dominates the light at II band and completely dominates at RR and VV bands. Hence, the lens system can be probed by follow-up observations immediately, i.e., long before the lens system and the source separate due to their relative proper motion. The system is well characterized despite the low cadence Γ=0.15\Gamma=0.15--0.20 hr−10.20\,{\rm hr^{-1}} of observations and short viewing windows near the end of the bulge season. This suggests that optical microlensing planet searches can be extended to the Galactic plane at relatively modest cost.Comment: 35 pages, 3 Tables, 8 figure
    • …
    corecore