17 research outputs found

    FMRI studies of single and multiple superimposed moving dot patterns

    No full text
    No abstract available

    Integration of multiple motion vectors over space: an fMRI study of transparent motion perception

    No full text
    Visual scenes are frequently composed of objects that move in different directions. To segment such scenes into distinct objects or image planes, local motion cues have to be evaluated and integrated according to criteria of global coherence. When several populations of coherently moving random dots penetrate each other, the visual system tends to assign them to different planes-perceived as transparent motion. This process of integration was studied by changing the angle of motion trajectories with which groups of dots penetrate each other or by varying the spatial constellation of dots moving in opponent directions. Psychophysical testing revealed that stimuli providing almost identical local motion cues could be perceived in three very different ways: (1) as a matrix of stationary flickering dots, (2) as a single surface of coherently moving dots, and (3) as two transparent dot matrices moving in different directions. Behaviorally controlled functional magnetic resonance imaging (fMRI) was used to identify brain regions that contribute to the integration of local motion cues into coherently moving surfaces. Activation of the human motion complex (hMT+/V5) and of areas in the fusiform gyrus (FG) as well as in the intraparietal sulcus (IPS-occ) was correlated with the perception of coherent motion and especially hMT+/V5 took a central role in differentiating transparent motion from single-surface coherent motion

    Event-related fMRI of saccadic eye movements

    No full text
    No abstract available

    Apparent motion: Eventrelated functional magnetic resonance imaging of perceptual switches and states.

    No full text
    When spatially segregated visual stimuli are presented in alternation, subjects may perceive a single stimulus moving between the two positions (apparent motion). By adjusting spatial and temporal parameters, an ambiguous condition can be created in which perception of back-and-forth motion alternates with the perception of two stationary blinking stimuli. We presented subjects with such ambiguous stimuli, asked them to signal periods of perceived motion and blinking, and measured brain activity with functional magnetic resonance imaging. Multiple regression analysis revealed that early visual areas responded with equal strength during both perceptual conditions, whereas hMT+(V5) (the human motion complex that includes the human homolog of MT and its satellites) was more active during the perception of apparent motion. These results indicate that neurons in hMT+ participate in the constructive process that creates a continuous motion percept from a discontinuous visual input

    Distributed cortical systems in visual short-term memory revealed by event-related functional magnetic resonance imaging

    Get PDF
    The spatio-temporal distribution of brain activity as revealed by non-invasive functional imaging helps to elucidate the neuronal encoding and processing strategies required by complex cognitive tasks. We investigated visual short-term memory for objects, places and conjunctions in humans using event-related time-resolved functional magnetic resonance imaging that permitted segregation of encoding, retention and retrieval phases. All conditions were accompanied by the activation of a widespread network of parietal and prefrontal areas during the retention phase, but this retention-related activity showed additional modulations depending on task instructions. These modulations confirmed a posterior-anterior and right-left dissociation for spatial versus non-spatial memory and revealed that conjunction memory does not rely on a linear addition of the component processes
    corecore