10 research outputs found

    Microspheres for Local Drug Delivery

    Get PDF

    Microsphere-Based Rapamycin Delivery, Systemic Versus Local Administration in a Rat Model of Renal Ischemia/Reperfusion Injury

    Get PDF
    The increasing prevalence and treatment costs of kidney diseases call for innovative therapeutic strategies that prevent disease progression at an early stage. We studied a novel method of subcapsular injection of monodisperse microspheres, to use as a local delivery system of drugs to the kidney. We generated placebo- and rapamycin monodisperse microspheres to investigate subcapsular delivery of drugs. Using a rat model of acute kidney injury, subcapsular injection of placebo and rapamycin monodisperse microspheres (monospheres) was compared to subcutaneous injection, mimicking systemic administration. We did not find any adverse effects related to the delivery method. Irrespective of the injection site, a similar low dose of rapamycin was present in the circulation. However, only local intrarenal delivery of rapamycin from monospheres led to decreased macrophage infiltration and a significantly lower amount of myofibroblasts in the kidney, where systemic administration did not. Local delivery of rapamycin did cause a transient increase in the deposition of collagen I, but not of collagen III. We conclude that therapeutic effects can be increased when rapamycin is delivered subcapsularly by monospheres, which, combined with low systemic concentrations, may lead to an effective intrarenal delivery method

    Титульні сторінки та зміст

    Get PDF
    Kidney injury triggers fibrosis, the final common pathway of chronic kidney disease (CKD). The increase of CKD prevalence worldwide urgently calls for new therapies. Available systemic treatment such as rapamycin are associated with serious side effects. To study the potential of local antifibrotic therapy, we administered rapamycin-loaded microspheres under the kidney capsule of ureter-obstructed rats and assessed the local antifibrotic effects and systemic side effects of rapamycin. After 7 days, microsphere depots were easily identifiable under the kidney capsule. Both systemic and local rapamycin treatment reduced intrarenal mTOR activity, myofibroblast accumulation, expression of fibrotic genes, and T-lymphocyte infiltration. Upon local treatment, inhibition of mTOR activity and reduction of myofibroblast accumulation were limited to the immediate vicinity of the subcapsular pocket, while reduction of T-cell infiltration was widespread. In contrast to systemically administered rapamycin, local treatment did not induce off target effects such as weight loss. Thus subcapsular delivery of rapamycin-loaded microspheres successfully inhibited local fibrotic response in UUO with less systemic effects. Therapeutic effect of released rapamycin was most prominent in close vicinity to the implanted microspheres. (C) 2014 Elsevier Ltd. All rights reserved

    Microspheres for Local Drug Delivery

    Get PDF
    About 40.000 people in The Netherlands suffer from kidney disease. When kidney function stops completely, dialysis and a kidney transplant are the only available treatment options. Because of a shortage in donor organs many patients have to depend on dialysis. However, dialysis has severe complications and remains a health threat. Within this project we have worked on a new patient friendly and affordable therapy for the treatment of kidney diseases. The therapy focusses on treating the disease in an early stage, thereby preventing the development towards chronic kidney failure. During this project we created microspheres of different polymers. With an in vitro cytotoxicity assay we could pre-select candidate microspheres which were not harmful to certain cell types. This way we reduced the number of experimental animals that is normally needed. Then we injected microspheres with different chemistry and physical characteristics on the back of a rat, and found that the diameter of the microsphere has an influence on the foreign body response. The effectiveness of microspheres with an optimal size of 30 µm was shown in two kidney disease models. We have shown that microspheres are a promising tool to deliver drugs locally and controllable in time. This local, controllable delivery of drugs leads to increased therapeutic effects combined with fewer side effects

    Biomaterial Encapsulation Is Enhanced in the Early Stages of the Foreign Body Reaction During Conditional Macrophage Depletion in Transgenic Macrophage Fas-Induced Apoptosis Mice

    Get PDF
    Macrophages are pivotal cells during the foreign body reaction (FBR), as they orchestrate the proinflammatory microenvironment inside and around biomaterials by secretion of inflammatory mediators. Furthermore, they are responsible for the degradation of biomaterials and are thought to instruct the fibroblasts that generate a fibrous capsule around implanted biomaterials. In this study, we investigated the events during the FBR when macrophages are not present. Hexamethylenediisocyanate crosslinked collagen scaffolds were implanted in "Macrophage Fas-Induced Apoptosis'' mice, which allow "on demand'' macrophage depletion. We observed that macrophage depletion completely inhibited inflammatory ingrowth into the scaffolds and resulted in an increased capsule size. Quantitative polymerase chain reaction analysis revealed decreased expression levels of proinflammatory mediators such as TNF alpha and IL1 beta, and increased expression levels of collagens and fibroblast-stimulating growth factors such as EGF, FGF1, FGF2, and TGF alpha. Our results indicate that macrophages are indeed crucial for the generation of a proinflammatory microenvironment inside implanted biomaterials, leading to inflammatory ingrowth. In contrast, macrophages do not appear to be important for the generation of a fibrous capsule around implanted biomaterials. In fact, our data suggest that the macrophages present in the capsule might instruct the surrounding fibroblasts to produce less fibroblast-stimulating factors and less collagens

    Associations between psychotropic drugs and rsEEG connectivity and network characteristics:a cross-sectional study in hospital-admitted psychiatric patients

    No full text
    Introduction: Resting-state EEG (rsEEG) characteristics, such as functional connectivity and network topology, are studied as potential biomarkers in psychiatric research. However, the presence of psychopharmacological treatment in study participants poses a potential confounding factor in biomarker research. To address this concern, our study aims to explore the impact of both single and multi-class psychotropic treatments on aforementioned rsEEG characteristics in a psychiatric population. Methods: RsEEG was analyzed in a real-world cross-sectional sample of 900 hospital-admitted psychiatric patients. Patients were clustered into eight psychopharmacological groups: unmedicated, single-class treatment with antipsychotics (AP), antidepressants (AD) or benzodiazepines (BDZ), and multi-class combinations of these treatments. To assess the associations between psychotropic treatments and the macroscale rsEEG characteristics mentioned above, we employed a general linear model with post-hoc tests. Additionally, Spearman's rank correlation analyses were performed to explore potential dosage effects. Results: Compared to unmedicated patients, single-class use of AD was associated with lower functional connectivity in the delta band, while AP was associated with lower functional connectivity in both the delta and alpha bands. Single-class use of BDZ was associated with widespread rsEEG differences, including lower functional connectivity across frequency bands and a different network topology within the beta band relative to unmedicated patients. All of the multi-class groups showed associations with functional connectivity or topology measures, but effects were most pronounced for concomitant use of all three classes of psychotropics. Differences were not only observed in comparison with unmedicated patients, but were also evident in comparisons between single-class, multi-class, and single/multi-class groups. Importantly, multi-class associations with rsEEG characteristics were found even in the absence of single-class associations, suggesting potential cumulative or interaction effects of different classes of psychotropics. Dosage correlations were only found for antipsychotics. Conclusion: Our exploratory, cross-sectional study suggests small but significant associations between single and multi-class use of antidepressants, antipsychotics and benzodiazepines and macroscale rsEEG functional connectivity and network topology characteristics. These findings highlight the importance of considering the effects of specific psychotropics, as well as their interactions, when investigating rsEEG biomarkers in a medicated psychiatric population

    Local therapeutic efficacy with reduced systemic side effects by rapamycin-loaded subcapsular microspheres

    No full text
    Kidney injury triggers fibrosis, the final common pathway of chronic kidney disease (CKD). The increase of CKD prevalence worldwide urgently calls for new therapies. Available systemic treatment such as rapamycin are associated with serious side effects. To study the potential of local antifibrotic therapy, we administered rapamycin-loaded microspheres under the kidney capsule of ureter-obstructed rats and assessed the local antifibrotic effects and systemic side effects of rapamycin. After 7 days, microsphere depots were easily identifiable under the kidney capsule. Both systemic and local rapamycin treatment reduced intrarenal mTOR activity, myofibroblast accumulation, expression of fibrotic genes, and T-lymphocyte infiltration. Upon local treatment, inhibition of mTOR activity and reduction of myofibroblast accumulation were limited to the immediate vicinity of the subcapsular pocket, while reduction of T-cell infiltration was widespread. In contrast to systemically administered rapamycin, local treatment did not induce off target effects such as weight loss. Thus subcapsular delivery of rapamycin-loaded microspheres successfully inhibited local fibrotic response in UUO with less systemic effects. Therapeutic effect of released rapamycin was most prominent in close vicinity to the implanted microspheres. (C) 2014 Elsevier Ltd. All rights reserved

    Local therapeutic efficacy with reduced systemic side effects by rapamycin-loaded subcapsular microspheres

    Get PDF
    Kidney injury triggers fibrosis, the final common pathway of chronic kidney disease (CKD). The increase of CKD prevalence worldwide urgently calls for new therapies. Available systemic treatment such as rapamycin are associated with serious side effects. To study the potential of local antifibrotic therapy, we administered rapamycin-loaded microspheres under the kidney capsule of ureter-obstructed rats and assessed the local antifibrotic effects and systemic side effects of rapamycin. After 7 days, microsphere depots were easily identifiable under the kidney capsule. Both systemic and local rapamycin treatment reduced intrarenal mTOR activity, myofibroblast accumulation, expression of fibrotic genes, and T-lymphocyte infiltration. Upon local treatment, inhibition of mTOR activity and reduction of myofibroblast accumulation were limited to the immediate vicinity of the subcapsular pocket, while reduction of T-cell infiltration was widespread. In contrast to systemically administered rapamycin, local treatment did not induce off target effects such as weight loss. Thus subcapsular delivery of rapamycin-loaded microspheres successfully inhibited local fibrotic response in UUO with less systemic effects. Therapeutic effect of released rapamycin was most prominent in close vicinity to the implanted microspheres

    Local therapeutic efficacy with reduced systemic side effects by rapamycin-loaded subcapsular microspheres

    No full text
    Kidney injury triggers fibrosis, the final common pathway of chronic kidney disease (CKD). The increase of CKD prevalence worldwide urgently calls for new therapies. Available systemic treatment such as rapamycin are associated with serious side effects. To study the potential of local antifibrotic therapy, we administered rapamycin-loaded microspheres under the kidney capsule of ureter-obstructed rats and assessed the local antifibrotic effects and systemic side effects of rapamycin. After 7 days, microsphere depots were easily identifiable under the kidney capsule. Both systemic and local rapamycin treatment reduced intrarenal mTOR activity, myofibroblast accumulation, expression of fibrotic genes, and T-lymphocyte infiltration. Upon local treatment, inhibition of mTOR activity and reduction of myofibroblast accumulation were limited to the immediate vicinity of the subcapsular pocket, while reduction of T-cell infiltration was widespread. In contrast to systemically administered rapamycin, local treatment did not induce off target effects such as weight loss. Thus subcapsular delivery of rapamycin-loaded microspheres successfully inhibited local fibrotic response in UUO with less systemic effects. Therapeutic effect of released rapamycin was most prominent in close vicinity to the implanted microspheres
    corecore