155 research outputs found

    The Effect of Estradiol and Progesterone on Toll Like Receptor Gene Expression in A Human Fallopian Tube Epithelial Cell Line

    Get PDF
    OBJECTIVE: Toll like receptors (TLRs) are one of the main components of the innate im- mune system. It has been reported that expression of these receptors are altered in the female reproductive tract (FRT) during menstrual cycle. Here we used a fallopian tube epithelial cell line (OE-E6/E7) to evaluate the effect of two sex hormones in modulating TLR expression. MATERIALS AND METHODS: In this experimental study, initially TLR gene expression in OE- E6/E7 cells was evaluated and compared with that of fallopian tube tissue using quanti- tative real time-polymerase chain reaction (qRT-PCR) and immunostaining. Thereafter, OE-E6/E7 cells were cultured with different concentrations of estradiol and progesterone, and combination of both. qRT-PCR was performed to reveal any changes in expression of TLR genes as a result of hormonal treatment. RESULTS: TLR1-10 genes were expressed in human fallopian tube tissue. TLR1-6 genes and their respective proteins were expressed in the OE-E6/E7 cell line. Although estradiol and progesterone separately had no significant effect on TLR expression, their combined treatment altered the expression of TLRs in this cell line. Also, the pattern of TLR expres- sion in preovulation (P), mensturation (M) and window of implantation (W) were the same for all TLRs with no significant differences between P, M and W groups. CONCLUSION: These data show the significant involvement of the combination of es- tradiol and progesterone in modulation of TLR gene expression in this human fal- lopian tube cell line. Further experiments may reveal the regulatory mechanism and signalling pathway behind the effect of sex hormones in modulating TLRs in the hu- man FRT

    Variable localization of Toll-like receptors in human fallopian tube epithelial cells

    Get PDF
    Objective: To determine the localization, expression, and function of Toll-like receptors (TLRs) in fallopian tube epithelial cells. Methods: The localization of TLRs in fallopian tube epithelial cells was investigated by immunostaining. Surprisingly, the intensity of staining was not equal in the secretory and ciliated cells. After primary cell culture of fallopian tube epithelial cells, ring cloning was used to isolate colonies of ciliated epithelial cells, distinct from non-ciliated epithelial cells. The expression of TLRs 1-10 was examined by quantitative real-time polymerase chain reaction, and protein localization was confirmed by immunostaining. The function of the TLRs was determined by interleukin (IL)-6 and IL-8 production in response to TLR2, TLR3, TLR5, TLR7, and TLR9 ligands. Results: Fallopian tube epithelial cells expressed TLRs 1-10 in a cell-type-specific manner. Exposing fallopian tube epithelial cells to TLR2, TLR3, TLR5, TLR7, and TLR9 agonists induced the secretion of proinflammatory cytokines such as IL-6 and IL-8. Conclusion: Our findings suggest that TLR expression in the fallopian tubes is cell-type-specific. According to our results, ciliated cells may play more effective role than non-ciliated cells in the innate immune defense of the fallopian tubes, and in interactions with gametes and embryos

    Systematic review of available guidelines on fertility preservation of young patients with breast cancer

    Get PDF
    Background: Since the survival rate of breast cancer patients has improved, harmful effects of new treatment modalities on fertility of the young breast cancer patients has become a focus of attention. This study aimed to systematically review and critically appraise all available guidelines for fertility preservation in young breast cancer patients. Materials and Methods: Major citation databases were searched for treatment guidelines. Experts from relevant disciplines appraised the available guidelines. The AGREE II Instrument that includes 23 criteria in seven domains (scope and purpose of the guidelines, stakeholder involvement, rigor of development, clarity, applicability, editorial independence, and overall quality) was used to apprise and score the guidelines. Results: The search strategy retrieved 2,606 citations; 72 were considered for full-text screening and seven guidelines were included in the study. There was variability in the scores assigned to different domains among the guidelines. ASCO (2013), with an overall score of 68.0, had the highest score, and St Gallen, with an overall score of 24.7, had the lowest scores among the guidelines. Conclusions: With the promising survival rate among breast cancer patients, more attention should be given to include specific fertility preservation recommendations for young breast cancer patients

    Functional differences of Toll-like receptor 4 in osteogenesis, adipogenesis and chondrogenesis in human bone marrow-derived mesenchymal stem cells

    Get PDF
    Multipotent human bone marrow-derived mesenchymal stem cells (hMSCs) are promising candidates for bone and cartilage regeneration. Toll-like receptor 4 (TLR4) is expressed by hMSCs and is a receptor for both exogenous and endogenous danger signals. TLRs have been shown to possess functional differences based on the species (human or mouse) they are isolated from therefore, the effects of knockdown of TLR4 were evaluated in humans during the differentiation of MSCs into bone, fat and chondrocyte cells in vitro. We investigated the expression profile of TLR4 during the differentiation of hMSCs into three different lineages on days 7, 14 and 21 and assessed the differentiation potential of the cells in the presence of lipopolysaccharide (LPS, as an exogenous agonist) and fibronectin fragment III-1c (FnIII-1c, as an endogenous agonist). TLR4 expression increased following the induction of hMSC differentiation into all three lineages. Alkaline phosphatase activity revealed that FnIII-1c accelerated calcium deposition on day 7, whereas LPS increased calcium deposition on day 14. Chondrogenesis increased in the presence of LPS; however, FnIII-1c acted as a reducer in the late stage. TLR4 silencing led to decreased osteogenesis and increased adipogenesis. Furthermore, Wnt5a expression was inversely related to chondrogenesis during the late stage of differentiation. We suggest that understanding the functionality of TLR4 (in the presence of pathogen or stress signal) during the differentiation of hMSCs into three lineages would be useful for MSC-based treatments. © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd

    Microarray analysis identification of key pathways and interaction network of differential gene expressions during osteogenic differentiation

    Get PDF
    Background: Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. Results: Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. Conclusions: These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT. © 2020, The Author(s)

    The effect of preincubation time and myo-inositol supplementation on the quality of mouse mii oocytes

    Get PDF
    Background: It is demonstrated that optimal preincubation time improves oocyte quality, fertilization potential and developmental rate. This study aimed to evaluate the effect of preincubation time in the simple and myo-inositol supplemented medium on the oocyte quality regarding oxidative stress and mitochondrial alteration. Methods: Cumulus oocyte complexes (COCs) retrieved from superovulated NMRI mice were divided in groups of 0, 4 and 8 hr preincubation time in the simple and 20 mmol/L myo-inositol supplemented media. Intracellular reactive oxygen species (H2O2), glutathione (GSH), mitochondrial membrane potential (MMP), ATP content, and mitochondrial amount were measured and analyzed in experimental groups. One-way ANOVA and Kruskal-Wallis were respectively used for parametric and nonparametric variables. Statistical significance was defined as p<0.05. Results: In comparison to control group, variables including ROS, GSH, mitochondrial amount, fertilization and developmental rates were significantly changed after 4 hr of preincubation in the simple medium, while MMP decreased following 8 hr of preincubation in the simple medium (p<0.001). Preincubation of oocytes up to 8 hr in the simple medium could not decrease ATP content. For both 4 and 8 hr preincubation times, myo-inositole could decrease H2O2 and increase GSH and MMP levels and consequently could improve fertilization rate compared to oocytes preincubated in the simple culture. Conclusion: It seems that 4 hr or more preincubation time can decrease the oocyte quality and lead to reduced oocyte fertilization and developmental potential. Howevere, myo-inositol may prevent oocyte quality reduction and improve fertilization potential in comparision to the equivalent simple groups. © 2020 Avicenna Research Institute. All rights reserved

    Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells.

    Get PDF
    Objective: The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. Methods: The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. Results: The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-β estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). Conclusion: These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OE-E6/E7 cell line
    corecore