47 research outputs found

    Ultrastructural localization of calcium and Ca2+-ATPase activity in gonadotrops and stellate cells of the catfish pituitary

    Get PDF
    In the pituitary of the African catfish, Clarias gariepinus, calcium precipitates were ultrastructurally visualized with the oxalate-pyroantimonate procedure (OPP). The presence of calcium in these precipiates was validated with several methods, including "Electron Energy Loss Spectrometry" (EELS). In the OPP-treated tissue calcium precipitates were seen in a) non-secretory stellate cells and b) gonadotropic (GTH-) cells. In the latter the amount of precipitate is generally low, but stimulation of the gonadotropin release, either in vivo or in vitro, resulted in a considerable increase. This increase is discussed in relation to the role of calcium as second messenger in the GTH-cells. Ca2+-ATPase was exclusively represented in stellate cells and GTH-cells, its strongest activity associated with the plasma membrane and with the membranes of the endoplasmic reticulum. The localization of this enzyme is discussed in relation to its role in the regulation of the intracellular calcium concentration in the GTH-cells. The stellate cells are considered to be involved in the regulation of extracellular calcium concentrations in the pituitary

    The complex superstructure in Mg1-xAlxB2 at x~0.5

    Full text link
    Electron diffraction and high resolution microscopy have been performed on Mg1-xAlxB2 with x~0.5. This composition displays a superstructure with a repeat period of exactly 2c along the c axis and about 10 nm in the a-b plane. The superstructure results in ring-shaped superreflections in the diffraction pattern. Irradiation by a strong electron beam results in a loss of the superstructure and a decrease of about 1% in the c lattice parameter. In-situ heating and cooling on the other hand showed that the superstructure is stable from 100 K to 700 K. Possible origins for the superstructure are proposed

    Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains

    Get PDF
    Intestinal carriage of extended-spectrum beta-lactamase (ESBL) -producing bacteria in food-producing animals and contamination of retail meat may contribute to increased incidences of infections with ESBL-producing bacteria in humans. Therefore, distribution of ESBL genes, plasmids and strain genotypes in Escherichia coli obtained from poultry and retail chicken meat in the Netherlands was determined and defined as ‘poultry-associated’ (PA). Subsequently, the proportion of E. coli isolates with PA ESBL genes, plasmids and strains was quantified in a representative sample of clinical isolates. The E. coli were derived from 98 retail chicken meat samples, a prevalence survey among poultry, and 516 human clinical samples from 31 laboratories collected during a 3-month period in 2009. Isolates were analysed using an ESBL-specific microarray, sequencing of ESBL genes, PCR-based replicon typing of plasmids, plasmid multi-locus sequence typing (pMLST) and strain genotyping (MLST). Six ESBL genes were defined as PA (blaCTX-M-1, blaCTX-M-2, blaSHV-2, blaSHV-12, blaTEM-20, blaTEM-52): 35% of the human isolates contained PA ESBL genes and 19% contained PA ESBL genes located on IncI1 plasmids that were genetically indistinguishable from those obtained from poultry (meat). Of these ESBL genes, 86% were blaCTX-M-1 and blaTEM-52 genes, which were also the predominant genes in poultry (78%) and retail chicken meat (75%). Of the retail meat samples, 94% contained ESBL-producing isolates of which 39% belonged to E. coli genotypes also present in human samples. These findings are suggestive for transmission of ESBL genes, plasmids and E. coli isolates from poultry to humans, most likely through the food chain

    Endosonography With or Without Confirmatory Mediastinoscopy for Resectable Lung Cancer:A Randomized Clinical Trial

    Get PDF
    PURPOSE:Resectable non-small-cell lung cancer (NSCLC) with a high probability of mediastinal nodal involvement requires mediastinal staging by endosonography and, in the absence of nodal metastases, confirmatory mediastinoscopy according to current guidelines. However, randomized data regarding immediate lung tumor resection after systematic endosonography versus additional confirmatory mediastinoscopy before resection are lacking.METHODS:Patients with (suspected) resectable NSCLC and an indication for mediastinal staging after negative systematic endosonography were randomly assigned to immediate lung tumor resection or confirmatory mediastinoscopy followed by tumor resection. The primary outcome in this noninferiority trial (noninferiority margin of 8% that previously showed to not compromise survival, Pnoninferior &lt;.0250) was the presence of unforeseen N2 disease after tumor resection with lymph node dissection. Secondary outcomes were 30-day major morbidity and mortality.RESULTS:Between July 17, 2017, and October 5, 2020, 360 patients were randomly assigned, 178 to immediate lung tumor resection (seven dropouts) and 182 to confirmatory mediastinoscopy first (seven dropouts before and six after mediastinoscopy). Mediastinoscopy detected metastases in 8.0% (14/175; 95% CI, 4.8 to 13.0) of patients. Unforeseen N2 rate after immediate resection (8.8%) was noninferior compared with mediastinoscopy first (7.7%) in both intention-to-treat (Δ, 1.03%; UL 95% CIΔ, 7.2%; Pnoninferior =.0144) and per-protocol analyses (Δ, 0.83%; UL 95% CIΔ, 7.3%; Pnoninferior =.0157). Major morbidity and 30-day mortality was 12.9% after immediate resection versus 15.4% after mediastinoscopy first (P =.4940).CONCLUSION:On the basis of our chosen noninferiority margin in the rate of unforeseen N2, confirmatory mediastinoscopy after negative systematic endosonography can be omitted in patients with resectable NSCLC and an indication for mediastinal staging.</p

    Energetics of polar and nonpolar facets of PbSe nanocrystals from theory and experiment

    No full text
    Surface energies of the distinct facets of nanocrystals are an important factor in the free energy and hence determine the nanocrystal morphology, chemical and physical properties, and even interparticle dipole interactions. Here we investigate the stability and atomic structure of polar and nonpolar PbSe surfaces by combining first-principles calculations with high-resolution transmission electron microscopy (TEM). For uncapped surfaces, the calculations predict that the nonpolar {100} surface is the most stable with a surface energy of 0.184 J m−2, while the nonpolar {110} and reconstructed {111}-Pb surfaces have surface energies of 0.318 J m−2 and 0.328 J m−2, respectively. Fully polar {111} surfaces are structurally unstable upon relaxation. These findings are in good agreement with TEM observations showing that capped nanocrystals have a nearly spherical, multifaceted morphology, while cubical shapes with predominantly {100} facets are obtained when the capping molecules are removed through heating in vacuum. During this process, however, also multipolar surfaces can temporarily exist just after the removal of the surfactants. These metastable {111} surfaces consist of ribbon-like nanodomains, whereby the ribbons are alternating in polarity. The calculations confirm that these multipolar surfaces are energetically more favorable than fully polar surfaces. The consequences for capped nanocrystals (a dominant Pb-oleate termination) and nanocrystal fusion (a shorter interaction range of dipole interactions) are discusse

    Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory

    No full text
    The iron carbide Fe7C3 exhibits two types of basic crystal structures, an orthorhombic (o-) form and a hexagonal (h-) one. First-principles calculations have been performed for the basic Fe7C3 forms and for the related ?-Fe3C cementite phase. Accurate total-energy calculations show that the stability of Fe7C3 is comparable to that of ?-Fe3C. The o-Fe7C3 phase is more stable than the hexagonal one, in contrast to recent atomistic simulations. Furthermore, the calculations also show a rather low energy for a carbon vacancy in the o structure, which implies possible C deficiency in the lattice. Both Fe7C3 phases are ferromagnetic metals. Electronic band-structure calculations show that all Fe atoms exhibit high-spin states with the majority of their 3d states being almost fully occupied. From an analysis of the structural and energetic properties, the formation of the o phase in steel treatment processes and of h form in carburization of ferrite is discussed.Kavli Institute of NanoscienceApplied Science

    Morphological transformations and fusion of PbSe nanocrystals studied using atomistic simulations

    No full text
    Molecular dynamics simulations are performed on capped and uncapped PbSe nanocrystals, employing newly developed classical interaction potentials. Here, we show that two uncapped nanocrystals fuse efficiently via direct surface attachment, even if they are initially misaligned. In sharp contrast to the general belief, interparticle dipole interactions do not play a significant role in this “oriented attachment” process. Furthermore, it is shown that presumably polar, capped PbSe{111} facets are never fully Pb- or Se-terminated
    corecore