442 research outputs found

    Preliminary observation on use of nest boxes in protected areas of Southern Sicily

    Get PDF
    In this short note we summarize the data self-made nesting in nest boxes in two areas of NATURA 2000 in southern Sicily. The models of nest boxes considered host species during the study the following period: Falco naumanni, Falco tinnunculus, Athene noctua, Strix aluco, Sturnus unicolor, Parus major, Certhia brachydactyla, Corvus monedula, Passer montanus

    An equilibrium model for RFP plasmas in the presence of resonant tearing modes

    Full text link
    The equilibrium of a finite-beta RFP plasma in the presence of saturated-amplitude tearing modes is investigated. The singularities of the MHD force balance equation JXB=grad(p) at the modes rational surfaces are resolved through a proper regularization of the zeroth-order (equilibrium) profiles, by setting to zero there the gradient of the pressure and parallel current density. An equilibrium model, which satisfies the regularization rule at the various rational surfaces, is developed. The comparison with the experimental data from the Reversed Field eXperiment (RFX) gives encouraging results. The model provides an easy tool for magnetic analysis: many aspects of the perturbations can be analyzed and reconstructed.Comment: Final accepted version. 36 page

    Nanostructured Lead Electrodes with Reduced Graphene Oxide for High-Performance Lead–Acid Batteries

    Get PDF
    Nanostructured Pb electrodes consisting of nanowire arrays were obtained by electrodeposition, to be used as negative electrodes for lead–acid batteries. Reduced graphene oxide was added to improve their performances. This was achieved via the electrochemical reduction of graphene oxide directly on the surface of nanowire arrays. The electrodes with and without reduced graphene oxide were tested in a 5 M sulfuric acid solution using a commercial pasted positive plate and an absorbed glass mat separator in a zero-gap configuration. The electrodes were tested in deep cycling conditions with a very low cut-off potential. Charge–discharge tests were performed at 5C. The electrode with reduced graphene oxide outperformed the electrode without reduced graphene oxide, as it was able to work with a very high utilization of active mass and efficiency. A specific capacity of 258 mAhg−1–very close to the theoretical one–was achieved, and the electrode lasted for more than 1000 cycles. On the other hand, the electrode without reduced graphene oxide achieved a capacity close to 230 mAhg−1, which corresponds to a 90% of utilization of active mass

    An active feedback recovery technique from disruption events induced by m=2 n=1 tearing modes in ohmically heated tokamak plasmas

    Full text link
    We present experimental results of magnetic feedback control on the m=2, n=1 tearing mode in RFX-mod operated as a circular ohmically heated tokamak. The feedback suppression of the non-resonant m=2, n=1 Resistive Wall Mode (RWM) in q(a)<2 plasmas is a well-established result of RFX-mod. The control of the tearing counterpart, which develops in q(a)>2 equilibrium, is instead a more difficult issue. In fact, the disruption induced by a growing amplitude m=2, n=1 tearing mode can be prevented by feedback only when the resonant surface q=2 is close to the plasma edge, namely 2<q(a)<2.5, and the electron density does not exceed approximately half of the Greenwald limit. A combined technique of tearing mode and q(a) control has been therefore developed to recover the discharge from the most critical conditions: the potentially disruptive tearing mode is converted into the relatively benign RWM by suddenly decreasing q(a) below 2. The experiments demonstrate the concept with 100% of successful cases. The q(a) control has been performed through the plasma current, given the capability of the toroidal loop-voltage power supply of RFX-mod. We also propose a path for controlling q(a) by acting on the plasma shape, which could be applied to medium size elongated tokamaks

    The plasma boundary in Single Helical Axis RFP plasmas

    Full text link
    Single Helical Axis (SHAx) states obtained in high current reversed field pinch (RFP) plasmas display, aside from a dominant mode in the m=1 spectrum, also a dominant m=0 mode, with the same toroidal mode number as the m=1 one. The two modes have a fixed phase relationship. The island chain created by the m=0 mode across the reversal surface gives rise, at shallow reversal of the toroidal field, to an X-point structure which separates the last closed flux surface from the first wall, creating a divertor-like configuration. The plasma-wall interaction is found to be related to the connection length of the field lines intercepting the wall, which displays a pattern modulated by the dominant mode toroidal periodicity. This configuration, which occurs only for shallow toroidal field reversal, could be exploited to realize an island divertor in analogy to stellarators.Comment: 12 pages, 9 figures Submitted to Nuclear Fusio

    Contrastive Language-Image Pretrained Models are Zero-Shot Human Scanpath Predictors

    Full text link
    Understanding the mechanisms underlying human attention is a fundamental challenge for both vision science and artificial intelligence. While numerous computational models of free-viewing have been proposed, less is known about the mechanisms underlying task-driven image exploration. To address this gap, we present CapMIT1003, a database of captions and click-contingent image explorations collected during captioning tasks. CapMIT1003 is based on the same stimuli from the well-known MIT1003 benchmark, for which eye-tracking data under free-viewing conditions is available, which offers a promising opportunity to concurrently study human attention under both tasks. We make this dataset publicly available to facilitate future research in this field. In addition, we introduce NevaClip, a novel zero-shot method for predicting visual scanpaths that combines contrastive language-image pretrained (CLIP) models with biologically-inspired neural visual attention (NeVA) algorithms. NevaClip simulates human scanpaths by aligning the representation of the foveated visual stimulus and the representation of the associated caption, employing gradient-driven visual exploration to generate scanpaths. Our experimental results demonstrate that NevaClip outperforms existing unsupervised computational models of human visual attention in terms of scanpath plausibility, for both captioning and free-viewing tasks. Furthermore, we show that conditioning NevaClip with incorrect or misleading captions leads to random behavior, highlighting the significant impact of caption guidance in the decision-making process. These findings contribute to a better understanding of mechanisms that guide human attention and pave the way for more sophisticated computational approaches to scanpath prediction that can integrate direct top-down guidance of downstream tasks

    Radiomics-Based Inter-Lesion Relation Network to Describe [18F]FMCH PET/CT Imaging Phenotypes in Prostate Cancer

    Get PDF
    Advanced image analysis, specifically radiomics, has been recognized as a potential source of biomarkers for cancers. However, there are challenges to its application in the clinic, such as proper description of diseases where multiple lesions coexist. In this study, we aimed to characterize the intra-tumor heterogeneity of metastatic prostate cancer using an innovative approach. This approach consisted of a transformation method to build a radiomic profile of lesions extracted from [18F]FMCH PET/CT images, a qualitative assessment of intra-tumor heterogeneity of patients, and a quantitative representation of the intra-tumor heterogeneity of patients in terms of the relationship between their lesions’ profiles. We found that metastatic prostate cancer patients had lesions with different radiomic profiles that exhibited intra-tumor radiomic heterogeneity and that the presence of many radiomic profiles within the same patient impacted the outcome

    Resistive g-modes in a reversed field pinch plasma

    Full text link
    First direct experimental evidence of high frequency, high toroidal mode number (n>20), magnetic fluctuations due to unstable resistive interchange modes (g-modes) resonant in the edge region of a reversed field pinch (RFP) plasma is presented. Experimental characterization of time and space periodicities of the modes is provided by means of highly resolved in-vessel edge and insertable magnetic diagnostics. It is found that the spectral mode properties are in good agreement with the predictions of the theoretical linear resistive magnetohydrodynamic stability analysis. A simple model is proposed for the observed saturation levels of the modes.Comment: Submitted to Physical Review Letter

    Statistical features of edge turbulence in RFX-mod from Gas Puffing Imaging

    Get PDF
    Plasma density fluctuations in the edge plasma of the RFX-mod device are measured through the Gas Puffing Imaging Diagnostics. Statistical features of the signal are quantified in terms of the Probability Distribution Function (PDF), and computed for several kinds of discharges. The PDFs from discharges without particular control methods are found to be adequately described by a Gamma function, consistently with the recent results by Graves et al [J.P. Graves, et al, Plasma Phys. Control. Fusion 47, L1 (2005)]. On the other hand, pulses with external methods for plasma control feature modified PDFs. A first empirical analysis suggests that they may be interpolated through a linear combination of simple functions. An inspection of the literature shows that this kind of PDFs is common to other devices as well, and has been suggested to be due to the simultaneous presence of different mechanisms driving respectively coherent bursts and gaussian background turbulence. An attempt is made to relate differences in the PDFs to plasma conditions such as the local shift of the plasma column. A simple phenomenological model to interpret the nature of the PDF and assign a meaning to its parameters is also developed.Comment: 27 pages. Published in PPC

    Signatures of non-Markovian turbulent transport in Reversed Field Pinch plasmas

    Full text link
    Transport of field lines is studied for a realistic model of magnetic field configuration in a Reversed Field Pinch. It is shown that transport is anomalous, i.e., it cannot be described within the standard diffusive paradigm. To fit numerical results we present a transport model based upon the Continuous Time Random Walk formalism. Fairly good quantitative agreement appears for exponential memory functions.Comment: 20 pages. Submitte
    • 

    corecore