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Abstract: Nanostructured Pb electrodes consisting of nanowire arrays were obtained by electrodepo-
sition, to be used as negative electrodes for lead–acid batteries. Reduced graphene oxide was added
to improve their performances. This was achieved via the electrochemical reduction of graphene
oxide directly on the surface of nanowire arrays. The electrodes with and without reduced graphene
oxide were tested in a 5 M sulfuric acid solution using a commercial pasted positive plate and an
absorbed glass mat separator in a zero-gap configuration. The electrodes were tested in deep cycling
conditions with a very low cut-off potential. Charge–discharge tests were performed at 5C. The
electrode with reduced graphene oxide outperformed the electrode without reduced graphene oxide,
as it was able to work with a very high utilization of active mass and efficiency. A specific capacity of
258 mAhg−1–very close to the theoretical one–was achieved, and the electrode lasted for more than
1000 cycles. On the other hand, the electrode without reduced graphene oxide achieved a capacity
close to 230 mAhg−1, which corresponds to a 90% of utilization of active mass.

Keywords: lead–acid batteries; negative electrode; nanostructures; reduced graphene oxide; template
electrodeposition; high C-rate

1. Introduction

Even though lead–acid batteries (LABs) are the oldest electrochemical energy storage
technology, they still attract some interest due to their low price and easy recyclability [1–3].
On the other hand, they are outperformed by Li-ion batteries (LIBs) when it comes to
weight, since their specific energy is limited to 30–40 Whkg−1 [4,5], while LIBs can be
manufactured with a specific energy up to 250 Whkg−1 [6]. LABs also suffer from a cycle
life limited to 500 cycles, which dramatically drops when they are operated at a partial
state of charge [7–10]. These poor performances, in conjunction with the fact that LABs can
operate at a maximum rate of C/5, drastically limit their application in hybrid electrical
vehicles and even in renewable energies applications [1,11–15]. The growth of large lead
sulfate crystals with low conductivity and low solubility was proven to cause negative
electrode failure in demanding conditions [16,17]; this phenomenon is often cited as “hard
sulfation” [18].

In the past 30 years, different solutions (such as lighter grid materials, additives
for pastes and/or electrolytes, bipolar plates, and gelled electrolytes) have been tested
to improve LABs performances [4,19–23]. However, the best solution proposed to date
concerns the use of carbon additives for negative plates [24–26]. These additives have
proven to suppress hard sulfation [16,27]. Carbon-based electrodes for hybrid devices have
also been developed [28,29].
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Thin-film and nanostructured PbO2 electrodes have been synthesized to overcome the
limitations of positive pasted plates, increasing active surface and utilization of the active
mass [30–37]. For nanostructured PbO2, even applications for asymmetric supercapacitors
have been proposed [38–42]. In past years, the template electrosynthesis technique [43–45]
was used by our group to develop free-standing PbO2 nanowires (NWs) electrodes, which
exhibited impressive results in terms of the utilization of active mass and life in deep-cycling
conditions, even at 10C [46]. The same results were obtained when we used a similar
technique to obtain Pb NWs electrodes [47,48] and in the case of a complete nanostructured
battery [49]. In general, the nanostructured morphology allows an improvement of the
performances in the electrochemical devices, thanks to the high surface area that guarantees
a high number of active sites for the redox reactions [50–54].

Graphene oxide (GO) has attracted our interest as an additive for nanostructured
Pb electrodes due to some good results obtained with nanostructured carbon additive
for LABs [29,55–58], but also because interesting GO experimental applications in electro-
chemical storage have been reported [59,60]. Its special properties have made it useful
for multiple applications [61–63]. GO structure consists of a few micrometers of large
graphene foil, which are decorated by polar oxygen groups such as alcohol and epoxide
groups [64]. GO, which is hydrophilic and easy to disperse in water due to its polar
groups, is synthetized from natural graphite [65]. Graphite is first oxidized (Hummer’s
method) and then exfoliated in water by sonication or stirring [66]. Once it is reduced,
GO yields the deposition of a graphene-like material—the so-called reduced graphene
oxide (rGO). Even though rGO performs less than graphene, as regards conductivity and
toughness, for instance [67], this new material can be easily mass produced [68]. In recent
years, graphene [55,69,70] and multi-walled carbon nanotubes (MWNT) [55,71] were also
tested as additives for the negative electrodes. Furthermore, some attempts were made
to exploit GO in the LABs electrode. Yang et al. proposed composite additives with GO
and polypyrrole [72] and with GO and PbO [73]. GO doped with N also has potential for
application in this field [74]. On the other hand, rGO was added to the negative electrodes
as a three-dimensional porous material [75], or as support for TiO2 nanoparticles [76] and
PbO nanoparticles [77].

In this work, we deposited rGO onto our nanostructured Pb electrodes via electro-
chemical reduction—a simple, economic, and eco-friendly process [68]—to enhance their
conductivity and activity. The composite electrodes were tested in a 5 M sulfuric acid solu-
tion in a zero-gap configuration using a commercial pasted positive plate and an Absorbed
Glass Mat (AGM) separator (Figure 1). Very severe test conditions were adopted to stress
the composite electrode. In particular, charge–discharge tests were performed at 5C and
a cut-off potential of −0.12 V vs. Mercury Sulphate Electrode (MSE) was imposed, corre-
sponding to a deep discharge, in order to check the lifetime of nanostructured composite
electrode in very severe discharge conditions. To underline the effect of rGO, as-prepared
electrode without rGO was tested in the same conditions.
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Figure 1. Scheme of nanostructured electrode and battery configuration.

2. Results and Discussion

The morphology of the samples was evaluated by scanning electron microscopy (SEM).
The SEM analysis proved that NWs deposition was achieved, as in our previous works [47]
(Figure 2A,B). A layer of ordered Pb NWs was present on the surface of the Pb current
collector, which was also obtained by electrodeposition.Batteries 2022, 8, x FOR PEER REVIEW 4 of 12 
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To prove the presence of rGO, further characterizations were performed. In particu-
lar, the Raman spectra of the samples were recorded to check the presence of rGO on its 
surface (Figure 3A). The bands of this spectrum, which are at 87.2, 142.6 and 287.9 cm−1, 
can be attributed to β-PbO. This attribution was performed using the database [79]. More-
over, the X-ray diffraction (XRD, Figure 3B) shows that its surface mostly comprises β-
PbO [80]. Traces of Pb are also revealed. Furthermore, the peak at 386.0 cm−1 of Raman 
shift and one of the peaks of the XRD pattern can be attributed to α-PbO [81]. PbO for-
mation is probably due to air and water exposure. Despite the presence of high-intensity 
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The Pb NWs electrodes were immersed in the solution containing GO (GO dispersion
in acetate buffer solution (ABS), pH 5.4) to deposit the rGO on their surface. The elec-
trochemical reduction of GO to rGO occurs following the reaction (1) proposed by Dong
et al. [78], which is the most commonly accepted mechanism:

GO + xH+ + ye− → rGO + zH2O (1)

A morphology change happened during the deposition of rGO. The NWs layer disap-
peared and flower-shaped crystals were present on the surface of the samples (Figure 2C,D).
These larger crystals may have formed via oxidation, dissolution of the NWs, and re-
precipitation due to the higher solubility of Pb2+ in the acetate buffer. Due to their low
thickness, the rGO sheets in the SEM images of Figure 2C,D are not clear visible. Despite
the change in surface morphology, the electrodes were further tested, since a rearrangement
of nanostructures was also recorded in our previous studies, while the electrodes were
cycled in sulfuric acid [47]. Furthermore, this new morphology with its flower-shaped
structures seemed to offer a high porosity and high surface.

To prove the presence of rGO, further characterizations were performed. In particular,
the Raman spectra of the samples were recorded to check the presence of rGO on its surface
(Figure 3A). The bands of this spectrum, which are at 87.2, 142.6 and 287.9 cm−1, can be
attributed to β-PbO. This attribution was performed using the database [79]. Moreover,
the X-ray diffraction (XRD, Figure 3B) shows that its surface mostly comprises β-PbO [80].
Traces of Pb are also revealed. Furthermore, the peak at 386.0 cm−1 of Raman shift and one
of the peaks of the XRD pattern can be attributed to α-PbO [81]. PbO formation is probably
due to air and water exposure. Despite the presence of high-intensity bands at low Raman
shift, this spectrum could also reveal some bands with a lower intensity at a higher Raman
shift (Figure 3A). In particular, the Raman modes at 1354 and 1598 cm−1 were isolated,
showing clear evidence of the presence of rGO on the surface of the electrode (see inset of
Figure 3A). In Figure 2C, the spectrum of the energy-dispersive X-ray spectroscopy (EDS)
of the sample after rGO deposition is reported. Apart from the peaks of Pb, the peaks of C
and O are also present.

Composite electrodes were assembled and tested in a zero-gap configuration. For
comparison, electrodes without rGO were also tested. Figure 4 summarizes these results.
When the nanostructured electrodes were tested in a battery configuration, the electrode
without rGO seemed to have a slightly higher performance than during the first 100 cycles.
As shown in Figure 4A, its potential is maintained at −1.0 V during the discharge, and it
sharply drops afterwards with a rectangular shape curve. On the other hand, the electrode
with rGO did not complete most of the charge with a quasi-constant potential during cycle
50 and 100, and it continued to deliver part of the charge after the first knee. However, the
electrode with rGO completed the charge at a lower potential and its capacity increased
from cycle 100, as also shown in Figure 5. Furthermore, both the electrodes showed a
marked performance improvement during these first cycles (Figure 5), as in our previous
work [47], with increasingly higher capacity and lower average potential during charge.
This behavior is a characteristic of the lead–acid battery and, as reported in [34], was due
to the change of the active material morphology. This change in morphology leads to a
change in the active material wettability, which increases during the first 100 cycles and
then remains stable, as demonstrated in our previous work by a contact angle test. As
soon as NWs’ wettability increases, the charge drained on discharge increases. In this
initial phase, the presence of rGO does not influence the electrode performances, which are
governed by the morphology change, and, therefore, in terms of wettability.
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The rGO becomes fundamental in subsequent cycles when the electrode reaches a
more or less stable morphology because its presence guarantees a good conductivity of
the electrode, and, therefore, a greater conversion efficiency into PbSO4 and vice versa
during cycling [75]. Further cycling leads the electrode with rGO to outperform the
electrode without rGO (Figures 4B and 5). In particular, its discharged capacity was close
to 220 mAhg−1 and its faradaic efficiency close to 90%, while the other electrode showed
much lower values. In addition, the electrode with rGO completed its charging at −1.2 V
and 200 mV below the electrode without rGO.

From cycle 500, both the electrodes showed an important performance improvement
(Figures 3C and 5). The electrode without rGO reached the performances which had been
met by the electrode with rGO in the previous cycles. Despite this improvement, the
electrode with rGO continued to outperform the other electrode. It worked close to the
theoretical specific capacity of 258.7 mAhg−1, meaning that almost all the mass of the
NWs reacts, and close to a unitary faradaic efficiency delivering current at the almost
constant voltage of −1.0 V. It also charged at a slightly lower potential. After cycle 900
(Figures 4D and 5), a dramatic performance decay affected the electrode without rGO.
Its faradaic efficiency dropped to 70% with a specific capacity lower than 200 mAhg−1.
Furthermore, this performance decay came after an increase in charging potential during
cycles 800–900. As a result, the electrode completed most of the charging at −1.4 V during
the last cycles. On the other hand, the electrode with rGO did not face any performance
decay, except for the presence of a knee in its discharging curve at cycle 1100 and a slightly
higher potential during charge.

The performance improvement is due to the addition of rGO and it can be attributed
to the influence of carbon materials on lead electrodes [16,28]. rGO might provide higher
conductivity to electrodes when it is fully discharged, suppressing the insulating effect of
PbSO4 [17]. This could explain the lower voltage required for charging. Furthermore, the
higher capacity and lower potential drop during discharging can be attributable to this
effect. In addition, rGO could help in reducing the formation of larger PbSO4 crystals, as
carbon additives do, due to its conductivity. This may explain the longer life of the electrode
with rGO, since the electrode without rGO probably failed for hard sulphation. However,
the presence of an extra active surface does not cause a higher hydrogen evolution rate,
as may happen with higher carbon additive loading [6,7,16,28]. In fact, no adverse effect
on the faradaic efficiency is reported. Furthermore, carbon additives are also believed to
mechanically suppress the formation of larger PbSO4 crystals [16]. Therefore, further work
is needed to understand the mechanism of influence of rGO.

3. Materials and Methods

Pb nanostructured electrodes were fabricated as described in our previous work [47].
Pb NWs were obtained via template electrodeposition. The template was a Whatman
Cyclopore 47 track-etched polycarbonate membrane (mean pore diameter of 200 nm and
15 µm thick). First, the membrane was gold-sputtered on one side to make its surface
electrically conductive. The gold film was 20–30 nm thick. Then, a 30 µm Pb compact
current collector was electrodeposited on this surface. This deposition was conducted in
three identical steps of 960 s each, using a pulsed current. After each step, the deposition
bath (lignin sulfonate 4.5 gL−1, H3BO3 15 gL−1, HBF4 35.2 gL−1, Pb(BF4)2 40.5 gL−1)
was refreshed. The pulsed current shape was rectangular with a maximum current of
−10 mAcm−2, lasting for 5 s, and a minimum current of 1 mAcm−2, lasting for 0.25 s. A
Pt mesh was used as a counter-electrode. The electrodeposition was performed using
the Solartron 1470E potentiostat. After deposition, the sample was washed with distilled
water, dried, and weighted with an analytical microbalance (Sartorius, mod. Premium
Microbalance ME36S). NWs deposition was performed on the other side of the membrane,
and NWs were deposited with the same conditions of the current collector. NWs deposition
lasted for 450 s to allow the growth of 10 µm-thick nanostructures, as elucidated by our
previous work [47]. The sample was again washed, dried, and weighted to estimate the
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electrode capacity with the weight of the nanostructures (gravimetric capacity). This is
the difference between the weight of the sample after NWs deposition and that before.
Membrane dissolution was accomplished in pure dichloromethane with 4 steps lasting
300 s each. For each step, a fresh solvent was used.

The electrode was then sealed in a parafilm and Teflon mask and electric contact was
provided with a lead foil. Potentiostatic deposition of rGO was performed in a cylindrical
cell (quick fit) with 30 mL of a GO dispersion in acetate buffer solution, pH 5.4 (ABS). The
electrode was already sealed in the mask, while the GO concentration was 0.2 gL−1, and
Pt-mesh and a saturated SCE served as a counter and reference electrode, respectively.
Deposition lasted for 600 s and the electrode potential was maintained at −0.8 V vs. SCE.

SEM (FEG-ESEM, FEI QUANTA 200), Raman (Renishaw, inVia Raman 158 Micro-
scope), and EDS (EDAX Ametek) spectroscopy were carried out in different areas of the
electrode. The samples were also characterized by X-ray diffraction (XRD, RIGAKU D-MAX
25600 HK). All characterization methods are detailed in [46,47].

The samples were tested as battery negative electrodes in 5 M of H2SO4, using a
commercial pasted plate as a positive electrode and AGM separator in a zero-gap config-
uration. A mercury sulfate electrode (MSE) was added to the set up. Constant current
charge–discharge tests were performed at 5C and a cut-off potential of −0.12 V vs. MSE
was used.

The first charge of each battery was conducted stepwise, as reported in [47], to avoid
severe gas evolution and crack of the electrode. The current was stepwise increased from
C/5 to 5C, and each step delivered the same charge.

4. Conclusions

This work pointed out the beneficial influence of rGO on nanostructured Pb electrodes.
High-performance nanostructured and rGO additive electrodes were manufactured. First,
Pb NWs electrodes were successfully electrodeposited and rGO electrodeposited on their
surface. The electrodes were tested under very stressful conditions, in terms of both charge–
discharge rate and discharge potential. Despite these conditions, excellent performances
were obtained. In fact, the electrodes can work close to the theoretical utilization of
active mass and to the capacity of 258.7 mAhg−1 with almost unitary faradaic efficiency.
Furthermore, the electrode discharges at almost constant potential when a constant current
is applied. These better performances are attributed to the high conductivity of rGO,
which suppress the activity loss due to the growth of PbSO4 crystals. Further work is
needed to understand the exact influence mechanism of rGO, and if it can deliver improved
performance at a higher C rate or to Pb electrodes with a different design.
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