3 research outputs found

    Osmotic stress tolerance in forage oat varieties (Avena Sativa L.) based on osmotic potential trials

    Get PDF
    Received: April 1st, 2022 ; Accepted: December 12th, 2022 ; Published: February 7th, 2023 ; Correspondence: [email protected]; [email protected] oats (Avena sativa L.) are globally important for milk and meat production, and, to a lesser extent, for the human diet. In Mexico, oats are a strategic crop, occupying the fourth place in cultivated area, only after maize for grain, bean, and sorghum for grain. Droughts are the main problem for oat production in Mexico. This study evaluated the germination and seedling growth of several oat varieties in response to drought stress simulated by PEG-6000 treatments of different osmotic pressure in order to identify drought-resistant genotypes. The Teporaca genotype was the most outstanding in the three levels of OP compared to its control with 0.0 of Osmotic Potential (OP). The Teporaca genotype showed the largest root length and the lowest diminishment of root length under osmotic stress conditions. This genotype also had the largest shoot length in the three osmotic stress levels. Regarding root fresh weight, Babicora stands out with 98.5% and Teporaca with 43% in the most severe level. Teporaca, Menonita, and Babicora showed the outstanding root dry weights of 346.5%, 327.2%, and 251.2%, respectively. These varieties had higher root dry weight than their own controls in water in the most severe level of OP. In conclusion, the Teporaca, Menonita, and Karma genotypes showed the highest osmotic stress tolerance and could be used as sources of favorable alleles to improve oat drought tolerance

    Physicochemical, thermal, rheological and morphological characteristics of flour and starch from a non-conventional source: Cucurbita foetidissima Kunth roots

    No full text
    Starch is a biopolymer which demand has increased because of its multiple industrial applications. The present work was performed to characterize, both flour and starch obtained from Cucurbita foetidissima root as a non-conventional source. According to its physicochemical, rheological (flow curves), thermal and morphological properties. The flour was composed of a 77% total of carbohydrates, and the isolated starch showed 88% purity. Granules found in both samples exhibited birefringence and mixed morphology. Particle size distribution varied from 1 to 35 µm for flour and from 1 to 29 µm for starch. The k and n indices from their evaluated suspensions at 25, 50 and 70 °C indicated a non-Newtonian behavior of pseudoplastic type for both materials. Gelatinization temperature was 63.58 ± 3.08 °C with ΔH = 5.64 ± 3.81 J/g for flour, and of 66.50 ± 0.06 °C with ΔH = 12.27 ± 0.17 J/g for starch. XRD patterns were mixed A and B, characteristic of cereal starches and rubbers, with changes in the crystallinity percentage with each other. These materials characteristics are similar to those of other sources such as cassava (Manihot esculenta), but different from cereals as corn (Zea mays), and other tubers, as potato (Solanum tuberosum)

    Innovations in Starch-Based Film Technology

    No full text
    Edible and biodegradable films can offer great potential to enhance food quality, safety and stability. The unique advantages of edible films and coatings may lead to new product developments, such as individual packaging of particulate foods, carriers for different additives, and nutrient supplements (Vermeiren et al., 1999). Composite films can be formulated to combine the advantages of each component. Proteins and polysaccharides provide the supporting matrix and are good barriers to gases, while lipids provide a good barrier to water vapor (Krochta and De Mulder Johnston, 1997). Over the last few years, there has been a renewed interest in biodegradable films and films made from renewable and natural polymers such as starch (Lawton, 1996; Vicentini et al., 2005). Several studies have been done to analyze the properties of starch-based films (Lawton and Fanta, 1994; Lourdin et al., 1995; Arvanitoyannis et al., 1998; Garcia et al., 1998a, 1998b, 2000a, 2000b, 2001; Mali et al., 2002; Vicentini et al., 2005). The use of a biopolymer such as starch can be an interesting solution because this polymer is quite cheap, abundant, biodegradable and edible. Amylose is responsible for the film-forming capacity of the starches. Starches are polymers that naturally occur in a variety of botanical sources such as wheat, corn, potatoes and tapioca or cassava. It is a renewable resource widely available and can be obtained from different by-products of harvesting and raw material industrialization.Fil: Garcia, Maria Alejandra. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Rojas, Ana Maria Luisa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laurindo, J.B.. Universidade Federal de Santa Catarina; BrasilFil: Romero Bastida, C.A.. Instituto Politécnico Nacional; MéxicoFil: Grossmann, M.V.E.. Universidade Estadual de Londrina; BrasilFil: Martino, Miriam Nora. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Flores, S.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Zamudio Flores, P.B.. Instituto Politécnico Nacional; MéxicoFil: Mali, S.. Universidade Estadual de Londrina; BrasilFil: Zaritzky, Noemi Elisabet. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Sobral, P.. Universidade de São Paulo; BrasilFil: Famá, L.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Bello Pérez, L.A.. Instituto Politécnico Nacional; MéxicoFil: Yamashita, F.. Universidade Estadual de Londrina; BrasilFil: Beleia, A. del P.. Universidade Estadual de Londrina; Brasi
    corecore