179 research outputs found

    Detecting Hate Speech in Social Media

    Full text link
    In this paper we examine methods to detect hate speech in social media, while distinguishing this from general profanity. We aim to establish lexical baselines for this task by applying supervised classification methods using a recently released dataset annotated for this purpose. As features, our system uses character n-grams, word n-grams and word skip-grams. We obtain results of 78% accuracy in identifying posts across three classes. Results demonstrate that the main challenge lies in discriminating profanity and hate speech from each other. A number of directions for future work are discussed.Comment: Proceedings of Recent Advances in Natural Language Processing (RANLP). pp. 467-472. Varna, Bulgari

    Native Language Identification on Text and Speech

    Full text link
    This paper presents an ensemble system combining the output of multiple SVM classifiers to native language identification (NLI). The system was submitted to the NLI Shared Task 2017 fusion track which featured students essays and spoken responses in form of audio transcriptions and iVectors by non-native English speakers of eleven native languages. Our system competed in the challenge under the team name ZCD and was based on an ensemble of SVM classifiers trained on character n-grams achieving 83.58% accuracy and ranking 3rd in the shared task.Comment: Proceedings of the Workshop on Innovative Use of NLP for Building Educational Applications (BEA

    Complex Word Identification: Challenges in Data Annotation and System Performance

    Full text link
    This paper revisits the problem of complex word identification (CWI) following up the SemEval CWI shared task. We use ensemble classifiers to investigate how well computational methods can discriminate between complex and non-complex words. Furthermore, we analyze the classification performance to understand what makes lexical complexity challenging. Our findings show that most systems performed poorly on the SemEval CWI dataset, and one of the reasons for that is the way in which human annotation was performed.Comment: Proceedings of the 4th Workshop on NLP Techniques for Educational Applications (NLPTEA 2017

    Challenges in discriminating profanity from hate speech

    Get PDF
    In this study, we approach the problem of distinguishing general profanity from hate speech in social media, something which has not been widely considered. Using a new dataset annotated specifically for this task, we employ supervised classification along with a set of features that includes -grams, skip-grams and clustering-based word representations. We apply approaches based on single classifiers as well as more advanced ensemble classifiers and stacked generalisation, achieving the best result of accuracy for this 3-class classification task. Analysis of the results reveals that discriminating hate speech and profanity is not a simple task, which may require features that capture a deeper understanding of the text not always possible with surface -grams. The variability of gold labels in the annotated data, due to differences in the subjective adjudications of the annotators, is also an issue. Other directions for future work are discussed
    • …
    corecore