27 research outputs found

    Evidence for haploidy in metacyclic forms of Trypanosoma brucei.

    No full text
    The parasitic flagellate Trypanosoma brucei undergoes a series of morphologic and metabolic changes during its passage in the digestive organs of its insect vector, a Glossina or tsetse fly. This morphogenesis ends by the differentiation, in the salivary gland of the fly, of the metacyclic form, which will be transmitted in the bloodstream of the mammalian host. On the basis of DNA microfluorometric measurements, we propose that these metacyclic trypanosomes have a haploid amount of DNA, compared to that of bloodstream forms and also of the proventricular forms, which initiate the invasion of the salivary glands. It can be inferred that trypanosomes undergo meiosis during their developmental cycle in the tsetse fly's salivary glands and syngamy shortly after cyclic transmission

    G2 checkpoint control and G2 chromosomal radiosensitivity in cancer survivors and their families

    No full text
    Significant inter-individual variation in G2 chromosomal radiosensitivity, measured as radiation-induced chromatid-type aberrations in the subsequent metaphase, has been reported in peripheral blood lymphocytes of both healthy individuals and a range of cancer patients. One possible explanation for this variation is that it is driven, at least in part, by the efficiency of G2–M checkpoint control. The hypothesis tested in the current analysis is that increased G2 chromosomal radiosensitivity is facilitated by a less efficient G2–M checkpoint. The study groups comprised 23 childhood and adolescent cancer survivors, their 23 partners and 38 of their offspring (Group 1) and 29 childhood and young adult cancer survivors (Group 2). Following exposure to 0.5 Gy of 300 kV X-rays, lymphocyte cultures were assessed for both G2 checkpoint delay and G2 chromosomal radiosensitivity. In Group 1, the extent of G2 checkpoint delay was measured by mitotic inhibition. No statistically significant differences in G2 checkpoint delay were observed between the cancer survivors (P = 0.660) or offspring (P = 0.171) and the partner control group nor was there any significant relationship between G2 checkpoint delay and G2 chromosomal radiosensitivity in the cancer survivors (P = 0.751), the partners (P = 0.634), the offspring (P = 0.824) or Group 1 taken as a whole (P = 0.379). For Group 2, G2 checkpoint delay was assessed with an assay utilising premature chromosome condensation to distinguish cell cycle stage. No significant relationship between G2 checkpoint delay and G2 chromosomal radiosensitivity was found (P = 0.284). Thus, this study does not support a relationship between G2–M checkpoint efficiency and variation in G2 chromosomal radiosensitivity

    Involvement of Brca1 in S-Phase and G(2)-Phase Checkpoints after Ionizing Irradiation

    No full text
    Cell cycle arrests in the G(1), S, and G(2) phases occur in mammalian cells after ionizing irradiation and appear to protect cells from permanent genetic damage and transformation. Though Brca1 clearly participates in cellular responses to ionizing radiation (IR), conflicting conclusions have been drawn about whether Brca1 plays a direct role in cell cycle checkpoints. Normal Nbs1 function is required for the IR-induced S-phase checkpoint, but whether Nbs1 has a definitive role in the G(2)/M checkpoint has not been established. Here we show that Atm and Brca1 are required for both the S-phase and G(2) arrests induced by ionizing irradiation while Nbs1 is required only for the S-phase arrest. We also found that mutation of serine 1423 in Brca1, a target for phosphorylation by Atm, abolished the ability of Brca1 to mediate the G(2)/M checkpoint but did not affect its S-phase function. These results clarify the checkpoint roles for each of these three gene products, demonstrate that control of cell cycle arrests must now be included among the important functions of Brca1 in cellular responses to DNA damage, and suggest that Atm phosphorylation of Brca1 is required for the G(2)/M checkpoint
    corecore