120 research outputs found

    Up to date results from the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a state-of-the-art cosmic ray detector, allowing one to analyse the properties of ultra-high energy cosmic rays with unprecedented precision. The observatory, covering an area of 3000 km2, combines two different detection techniques, making it the first of its kind. Here, we present some of the most relevant results obtained by this experiment.This work has been funded by the Ministerio de Economía y Competitividad

    Volume III. DUNE far detector technical coordination

    Get PDF
    This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.Fermi Research Alliance, LLC (FRA) DE-AC02-07CH1135

    Coste-efectividad del implante percutáneo de válvula aórtica con SAPIEN 3 en pacientes con bajo riesgo de mortalidad quirúrgica en España

    Get PDF
    España; Prótesis valvular cardiaca; Coste-efectividadSpain; Prosthetic heart valve; Cost-effectiveness analisyEspanya; Pròtesis valvular cardíaca; Cost-efectivitatIntroduction and objectives: Transcatheter aortic valve implantation (TAVI) was first introduced in 2007 as an alternative to open heart surgery to treat patients with severe symptomatic aortic stenosis (sSAS) with various indication expansions since that date. Recently, the PARTNER 3 study (Placement of aortic transcatheter valve) demonstrated clinical benefits with TAVI with the SAPIEN 3 valve vs surgical aortic valve replacement (SAVR) in selected low surgical mortality risk patients. We reviewed data from the PARTNER 3 and economic data from Spain to assess the cost-effectiveness ratio of TAVI vs SAVR in patients with sSAS and low surgical mortality risk. Methods: A 2-stage model was used to estimate direct healthcare costs and health-related quality of life data regarding TAVI with the SAPIEN 3 valve and SAVR. Early adverse events associated with TAVI from the PARTNER 3 were fed into a Markov model that captured longer-term outcomes after TAVI or SAVR. Results: TAVI with SAPIEN 3 improved quality-adjusted life years per patient (+ 1.00) with an increase in costs vs SAVR (€6971 per patient). This meant an incremental cost-effectiveness ratio/quality-adjusted life year of €6952 per patient. The results were robust with TAVI with the SAPIEN 3 valve remaining cost-effective across several sensitivity analyses. Conclusions: TAVI with the SAPIEN 3 valve is cost effective compared to SAVR in patients with sSAS and low surgical mortality risk. These findings can inform policymakers to facilitate policy development in Spain on intervention selection in this patient population.Introducción y objetivos: El implante percutáneo de válvula aórtica (TAVI) se introdujo en 2007 como una alternativa a la cirugía a corazón abierto para tratar a pacientes con estenosis aórtica grave sintomática, y desde entonces han aumentado las indicaciones autorizadas. Recientemente, el Placement of Aortic Transcatheter Valve Study (PARTNER) 3 ha demostrado beneficios clínicos con el TAVI con la válvula SAPIEN 3 frente al reemplazo quirúrgico de válvula aórtica (RVAo) en pacientes seleccionados con bajo riesgo de mortalidad quirúrgica. Utilizando los datos del PARTNER 3 junto con datos económicos de España, se evaluó la relación coste-efectividad del TAVI en comparación con el RVAo en pacientes con estenosis aórtica grave sintomática con bajo riesgo de mortalidad quirúrgica. Métodos: Se utilizó un modelo en dos etapas para estimar los costes directos sanitarios y los datos de calidad de vida relacionados con la salud para TAVI con la válvula SAPIEN 3 y RVAo. Los eventos adversos tempranos relacionados con TAVI del PARTNER 3 se incluyeron en un modelo de Markov, que capturó los resultados a más largo plazo tras TAVI o RVAo. Resultados: El TAVI con SAPIEN 3 mejoró los años de vida ajustados por calidad por paciente (+1,00), con un aumento en el coste frente al RVAo de 6.971 € por paciente. Esto representó una ratio coste-efectividad incremental por año de vida ganado ajustado por calidad de 6.952€ por paciente. Los resultados fueron robustos en los diversos análisis de sensibilidad realizados, en los que el TAVI con SAPIEN 3 se mantiene como una opción coste-efectiva. Conclusiones: El TAVI con SAPIEN 3 es coste-efectivo en comparación con el RVAo en pacientes con estenosis aórtica grave sintomática con bajo riesgo de mortalidad quirúrgica. Estos resultados pueden informar a los decisores políticos en España para facilitar el desarrollo de políticas sobre la selección de opciones terapéuticas en esta población de pacientes. Palabras clave: España. Implante percutáneo de válvula aórtica. Cirugía cardiaca. Prótesis valvular cardiaca. Reemplazo quirúrgico de válvula aórtica. Análisis coste-beneficio. Análisis coste-efectividad. Estenosis aórtica. Bajo riesgo.Edwards Lifesciences SA, Switzerland provided funding for the economic assessment and was involved in the analysis as well as in the drafting of this manuscript

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.Fermi Research Alliance, LLC (FRA) DE-AC02-07CH11359Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio De Janeiro (FAPERJ) Fundacao de Amparo a Pesquisa do Estado do Goias (FAPEG) Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Canada Foundation for Innovation IPP, Canada Natural Sciences and Engineering Research Council of Canada (NSERC)CERNMinistry of Education, Youth & Sports - Czech Republic Czech Republic GovernmentERDF, European Union H2020-EU, European Union MSCA, European UnionCentre National de la Recherche Scientifique (CNRS) French Atomic Energy CommissionIstituto Nazionale di Fisica Nucleare (INFN)Portuguese Foundation for Science and Technology European CommissionNational Research Foundation of KoreaCAM, Spain La Caixa Foundation Junta de Andalucia-FEDER, Spain Ministry of Science and Innovation, Spain (MICINN) Spanish Government Xunta de GaliciaSERI, Switzerland Swiss National Science Foundation (SNSF)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)Royal Society of London UK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) United States Department of Energy (DOE) National Science Foundation (NSF) National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility DE-AC02-05CH1123

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE’s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4σ (5σ) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3σ for almost all true δCP values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-CY exposure for the maximally CP-violating values δCP ¼ π=2. Additionally, the dependence of DUNE’s sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest.Fermi Research Alliance, LLC (FRA) DE-AC02-07CH11359CNPq, FAPERJ, FAPEG and FAPESP, BrazilCFI, Institute of Particle Physics (IPP) and NSERC, CanadaCERNMŠMT, Czech RepublicERDF, H2020-EU and MSCA, European UnionCNRS/IN2P3 and CEA, FranceINFN, ItalyFCT, PortugalNRF, South KoreaComunidad de Madrid (CAM), Fundación “La Caixa,” Junta de Andalucía-FEDER, and MICINN, SpainSERI and SNSF, SwitzerlandTÜBİTAK, TurkeyThe Royal Society and UKRI/STFC, United KingdomDOE and NSF, United States of Americ

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Get PDF
    Measurements of electrons from ν e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Fermi Research Alliance, LLC (FRA)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio De Janeiro (FAPERJ)Fundacao de Amparo a Pesquisa do Estado do Goias (FAPEG)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Canada Foundation for InnovationInstitute of Particle Physics (IPP), CanadaNatural Sciences and Engineering Research Council of Canada (NSERC)CERNMinistry of Education, Youth & Sports - Czech Republic Czech Republic GovernmentEuropean Union (EU) Marie Curie ActionsCentre National de la Recherche Scientifique (CNRS)French Atomic Energy Commission DE-AC02-07CH11359Istituto Nazionale di Fisica Nucleare (INFN)Fundacao para a Ciencia e a Tecnologia (FCT)National Research Foundation of KoreaComunidad de MadridLa Caixa FoundationSpanish GovernmentSERI, SwitzerlandSwiss National Science Foundation (SNSF)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)UK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC)Royal SocietyUnited States Department of Energy (DOE)National Science Foundation (NSF)National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility DE-AC02-05CH1123

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNEis a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6×6×6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE FarDetector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.CERN CERN EP CERN BE CERN TE CERN ENIT Departments for NP04/ProtoDUNE-SPFermi Research Alliance, LLC (FRA) DE-AC02-07CH11359Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio De Janeiro (FAPERJ) Fundacao de Amparo a Pesquisa do Estado do Goias (FAPEG) Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Canada Foundation for Innovation IPP, Canada Natural Sciences and Engineering Research Council of Canada (NSERC)Ministry of Education, Youth & Sports - Czech Republic Czech Republic GovernmentERDF, European Union H2020-EU, European Union MSCA, European UnionCentre National de la Recherche Scientifique (CNRS) French Atomic Energy CommissionIstituto Nazionale di Fisica Nucleare (INFN)Portuguese Foundation for Science and Technology European CommissionNational Research Foundation of KoreaCAM, Spain La Caixa Foundation Junta de Andalucia-FEDER, Spain Spanish Government Xunta de GaliciaSERI, Switzerland Swiss National Science Foundation (SNSF)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)Royal Society of London UK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) United States Department of Energy (DOE) National Science Foundation (NSF) National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility DE-AC02-05CH1123

    The Pierre Auger Cosmic Ray Observatory

    Get PDF
    The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), São Paulo Research Foundation (FAPESP) Grants # 2010/07359-6 and # 1999/05404-3, Ministério de Ciência e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation Grant 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris, ILP LABEX ANR-10-LABX-63, within the Investissements d'Avenir ProgrammeANR-11-IDEX-0004-02, France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Astrofisica (INAF), Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grant nos. ERA-NETASPERA/01/11 and ERA-NET-ASPERA/02/11, National Science Centre, Grant nos. 2013/08/M/ST9/00322, and 2013/08/M/ST9/00728 and HARMONIA 5 – 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE – Programa Operacional Factores de Competitividade through Fundação para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nos. 20/2012 and nr.194/2012, project nos. 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011- 3-0062, the Minister of National Education, Programme for research – Space Technology and Advanced Research – STAR, project number 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educación y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant no. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract no. DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107 and DE-SC0011689, National Science Foundation, Grant no. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant no. PIRSES-2009- GA-246806; and UNESCO.The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world׳s largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.Comision Nacional de Energia AtomicaFundacion AntorchasGobierno De La Provincia de MendozaMunicipalidad de MalargueNDM Holdings and Valle Las LenasAustralian Research CouncilNational Council for Scientific and Technological Development (CNPq)Ciencia Tecnologia e Inovacao (FINEP)Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 2010/07359-6 1999/05404-3Ministerio de Ciencia e Tecnologia (MCT), BrazilMinistry of Education, Youth & Sports - Czech Republic LG13007 7AMB14AR005 CZ.1.05/2.1.00/03.0058Grant Agency of the Czech Republic Czech Republic Government 14-17501SCentre National de la Recherche Scientifique (CNRS)Region Ile-de-FranceDepartement Physique Nucleaire et Corpusculaire PNC-IN2P3/CNRSDepartement Sciences de l'Univers (SDU-INSU/CNRS)Institut Lagrange de ParisFrench National Research Agency (ANR) ANR-11-IDEX-0004-02 ANR-10-LABX-63Federal Ministry of Education & Research (BMBF)German Research Foundation (DFG)Finanzministerium Baden-WurttembergHelmholtz Alliance for Astroparticle Physics (HAP)Helmholtz AssociationMinisterium fur Wissenschaft und ForschungNordrhein WestfalenMinisterium fur WissenschaftForschung und KunstBaden-Wurttemberg, GermanyIstituto Nazionale Astrofisica (INAF)Istituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)Gran Sasso Center for Astroparticle Physics (CFA)CETEMPS Center of Excellence, ItalyConsejo Nacional de Ciencia y Tecnologia (CONACyT)Ministerie van OnderwijsCultuur en WetenschapNetherlands Organization for Scientific Research (NWO)FOM (The Netherlands) Netherlands GovernmentNational Centre for Research and Development ERA-NET-ASPERA/01/11 ERA-NET-ASPERA/02/11National Science Centre, Poland 2013/08/M/ST9/00322 2013/08/M/ST9/00728 HARMONIA 5 - 2013/10/M/ST9/00062Portuguese national fundsFEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, PortugalRomanian Authority for Scientific Research ANCSCNDI-UEFISCDI 20/2012 194/2012 1/ASPERA2/2012 ERA-NET PN-II-RU-PD-2011-3-0145-17 PN-II-RU-PD-2011-3-0062Programme for research - Space Technology and Advanced Research - STAR, Romania 83/2013Slovenian Research Agency - SloveniaComunidad de Madrid Instituto de Salud Carlos IIIEuropean Union (EU)Spanish GovernmentXunta de GaliciaEuropean Community, Spain FP7-PEOPLE-2012-IEF-328826Science & Technology Facilities Council (STFC)United States Department of Energy (DOE) DE-AC02-07CH11359 DE-FR02-04ER41300 DE-FG02-99ER41107 DE-SC0011689National Science Foundation (NSF) 0450696Grainger Foundation, USANational Foundation for Science & Technology Development (NAFOSTED)Marie Curie-IRSES/EPLANETEuropean Particle Physics Latin American NetworkEuropean Union (EU) PIRSES-2009-GA-246806UNESC

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    This document was prepared by the DUNE Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republic; ERDF, H2020-EU and MSCA, European Union; CNRS/IN2P3 and CEA, France; INFN, Italy; FCT, Portugal; NRF, South Korea; CAM, Fundacion "La Caixa," Junta de Andalucia-FEDER, MICINN, and Xunta de Galicia, Spain; SERI and SNSF, Switzerland; TUBITAK, Turkey; The Royal Society and UKRI/STFC, United Kingdom; DOE and NSF, United States of America. This work was also supported by FAPESB T. O. PIE 0013/2016 and UESC/PROPP 0010299-61.A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the Oo10 thorn MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the & nu;e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section & sigma;oE & nu; thorn for charged-current & nu;e absorption on argon. In the context of a simulated extraction of supernova & nu;e spectral parameters from a toy analysis, we investigate the impact of & sigma;oE & nu; thorn modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on & sigma;oE & nu; thorn must be substantially reduced before the & nu;e flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires & sigma;oE & nu; thorn to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of & sigma;oE & nu; thorn . A direct measurement of low-energy & nu;e-argon scattering would be invaluable for improving the theoretical precision to the needed level.CERNERDF, H2020-EUMSCA, European UnionCAM, SpainLa Caixa FoundationJunta de Andalucia-FEDER, SpainSpanish GovernmentXunta de GaliciaMICINN, SpainFAPESB T. O. PIE0013/2016UESC/PROPP 0010299-6

    Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10(17.8) eV

    Get PDF
    The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6, No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris, ILP LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr. 20/2012 and nr. 194/2012, project nr. 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research - Space Technology and Advanced Research - STAR, project no. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, U.K.; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8  eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.Comision Nacional de Energia AtomicaFundacion AntorchasGobierno De La Provincia de MendozaMunicipalidad de MalargueNDM HoldingsValle Las LenasAustralian Research CouncilNational Council for Scientific and Technological Development (CNPq)Ciencia Tecnologia e Inovacao (FINEP)Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 2010/07359-6 1999/05404-3Ministerio de Ciencia e Tecnologia (MCT), BrazilGrant Agency of the Czech Republic Czech Republic Government 14-17501SCentre National de la Recherche Scientifique (CNRS)Region Ile-de-FranceDepartement Sciences de l'Univers (SDU-INSU/CNRS)Institut Lagrange de ParisFrench National Research Agency (ANR) ANR-10-LABX-63 ANR-11-IDEX-0004-02Federal Ministry of Education & Research (BMBF)German Research Foundation (DFG)Finanzministerium Baden-WurttembergHelmholtz AssociationMinisterium fur Wissenschaft und ForschungNordrhein WestfalenMinisterium fur WissenschaftForschung und KunstBaden-Wurttemberg, GermanyIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)Gran Sasso Center for Astroparticle Physics (CFA)CETEMPS Center of Excellence, ItalyConsejo Nacional de Ciencia y Tecnologia (CONACyT)Ministerie van Onderwijs, Cultuur en WetenschapNetherlands Organization for Scientific Research (NWO)FOM (The Netherlands) Netherlands GovernmentNational Centre for Research and Development ERA-NET-ASPERA/01/11 ERA-NET-ASPERA/02/11National Science Centre, Poland 2013/08/M/ST9/00322 2013/08/M/ST9/00728 HARMONIA 5 - 2013/10/M/ST9/00062Portuguese national funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, PortugalFEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, PortugalRomanian Authority for Scientific Research ANCSCNDI-UEFISCDI 20/2012 194/2012 1/ASPERA2/2012 ERA-NET PN-II-RU-PD-2011-3-0145-17 PN-II-RU-PD-2011-3-0062Minister of National Education, Programme for research - Space Technology and Advanced Research - STAR, Romania 83/2013Slovenian Research Agency - SloveniaComunidad de Madrid Instituto de Salud Carlos IIIEuropean Union (EU)Spanish GovernmentXunta de GaliciaEuropean Community 7th Framework Program, Spain FP7-PEOPLE-2012-IEF-328826Science & Technology Facilities Council (STFC)United States Department of Energy (DOE) DE-AC02-07CH11359 DE-FR02-04ER41300 DE-FG02-99ER41107 DE-SC0011689National Science Foundation (NSF) 0450696Grainger Foundation, USANational Foundation for Science & Technology Development (NAFOSTED)European Union (EU) PIRSES-2009-GA-246806UNESCOMSMT-CR LG130077AMB14AR005CZ.1.05/2.1.00/03.005
    corecore