6,569 research outputs found

    Guaranteed emergence of genuine entanglement in 3-qubit evolving systems

    Full text link
    Multipartite entanglement has been shown to be of particular relevance for a better understanding and exploitation of the dynamics and flow of entanglement in multiparty systems. This calls for analysis aimed at identifying the appropriate processes that guarantee the emergence of multipartite entanglement in a wide range of scenarios. Here we carry on such analysis considering a system of two initially entangled qubits, one of which is let to interact with a third qubit according to an arbitrary unitary evolution. We establish necessary and sufficient conditions on the corresponding Kraus operators, to discern whether the evolved state pertains to either one of the classes of 3-qubit pure states that exhibit some kind of entanglement, namely biseparable, W-, and GHZ- genuine entangled classes. Our results provide a classification of the Kraus operators according to their capacity of producing 3-qubit entanglement, and pave the way for extending the analysis to larger systems and determining the particular interactions that must be implemented in order to create, enhance and distribute entanglement in a specific manner.Comment: Two new subsections included. Accepted for publication in The European Physical Journal

    Reciprocity of Networks with Degree Correlations and Arbitrary Degree Sequences

    Full text link
    Although most of the real networks contain a mixture of directed and bidirectional (reciprocal) connections, the reciprocity rr has received little attention as a subject of theoretical understanding. We study the expected reciprocity of networks with an arbitrary degree sequence and a broad class of degree correlations by means of statistical ensemble approach. We demonstrate that degree correlations are crucial to understand the reciprocity in real networks and a hierarchy of correlation contributions to rr is revealed. Numerical experiments using novel network randomization methods show very good agreement to our analytical estimations.Comment: 8 pages, 3 figures, added a new table and a new figure, accepted for publication in Phys.Rev.

    Probing the Majorana neutrinos and their CP violation in decays of charged scalar mesons π,K,D,Ds,B,Bc\pi, K, D, D_s, B, B_c

    Full text link
    Some of the outstanding questions of particle physics today concern the neutrino sector, in particular whether there are more neutrinos than those already known and whether they are Dirac or Majorana particles.There are different ways to explore these issues. In this article we describe neutrino-mediated decays of charged pseudoscalar mesons such as π±\pi^{\pm}, K±K^{\pm} and B±B^{\pm}, in scenarios where extra neutrinos are heavy and can be on their mass shell. We discuss semileptonic and leptonic decays of such kinds. We investigate possible ways of using these decays in order to distinguish between the Dirac and Majorana character of neutrinos. Further, we argue that there are significant possibilities of detecting CP violation in such decays when there are at least two almost degenerate Majorana neutrinos involved. This latter type of scenario fits well into the known neutrino minimal standard model (ν\nuMSM) which could simultaneously explain the Dark Matter and Baryon Asymmetry of the Universe.Comment: v3: 37 pages, 14 figures; minor typographical errors corrected; published in Symmetr

    Characterization of digital dispersive spectrometers by low coherence interferometry

    Get PDF
    We propose a procedure to determine the spectral response of digital dispersive spectrometers without previous knowledge of any parameter of the system. The method consists of applying the Fourier transform spectroscopy technique to each pixel of the detection plane, a CCD camera, to obtain its individual spectral response. From this simple procedure, the system-point spread function and the effect of the finite pixel width are taken into account giving rise to a response matrix that fully characterizes the spectrometer. Using the response matrix information we find the resolving power of a given spectrometer, predict in advance its response to any virtual input spectrum and improve numerically the spectrometer's resolution. We consider that the presented approach could be useful in most spectroscopic branches such as in computational spectroscopy, optical coherence tomography, hyperspectral imaging, spectral interferometry and analytical chemistry, among others.Fil: Martínez Matos, Ó.. Universidad Complutense de Madrid; EspañaFil: Rickenstorff, C.. Universidad Complutense de Madrid; EspañaFil: Zamora, S.. Universidad Complutense de Madrid; EspañaFil: Izquierdo, J. G.. Universidad Complutense de Madrid; EspañaFil: Vaveliuk, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentin

    Thin Film Formation During Splashing of Viscous Liquids

    Full text link
    After impact onto a smooth dry surface, a drop of viscous liquid initially spreads in the form of a thick lamella. If the drop splashes, it first emits a thin fluid sheet that can ultimately break up into droplets causing the splash. Ambient gas is crucial for creating this thin sheet. The time for sheet ejection, tejtt_{ejt}, depends on impact velocity, liquid viscosity, gas pressure and molecular weight. A central air bubble is trapped below the drop at pressures even below that necessary for this sheet formation. In addition, air bubbles are entrained underneath the spreading lamella when the ejected sheet is present. Air entrainment ceases at a lamella velocity that is independent of drop impact velocity as well as ambient gas pressure.Comment: 8 pages, 11 figure

    Vortices on demand in multicomponent Bose-Einstein condensates

    Full text link
    We present a simple mechanism to produce vortices at any desired spatial locations in harmonically trapped Bose-Einstein condensates (BEC) with multicomponent spin states coupled to external transverse and axial magnetic fields. The vortices appear at the spatial points where the spin-transverse field interaction vanishes and, depending on the multipolar magnetic field order, the vortices can acquire different predictable topological charges. We explicitly demonstrate our findings, both numerically and analytically, by analyzing a 2D BEC via the Gross-Pitaevskii equation for atomic systems with either two or three internal states. We further show that, by an spontaneous symmetry breaking mechanism, vortices can appear in any spin component, unless symmetry is externally broken at the outset by an axial field. We suggest that this scenario may be tested using an ultracold gas of 87^{87}Rb occupying all three F=1F = 1 states in an optical trap.Comment: 11 pages, 9 figures, (Accepted in PRA
    corecore