5 research outputs found

    Determining the Completeness of the Nimbus Meteorological Data Archive

    Get PDF
    NASA launched the Nimbus series of meteorological satellites in the 1960s and 70s. These satellites carried instruments for making observations of the Earth in the visible, infrared, ultraviolet, and microwave wavelengths. The original data archive consisted of a combination of digital data written to 7-track computer tapes and on various film media. Many of these data sets are now being migrated from the old media to the GES DISC modern online archive. The process involves recovering the digital data files from tape as well as scanning images of the data from film strips. Some of the challenges of archiving the Nimbus data include the lack of any metadata from these old data sets. Metadata standards and self-describing data files did not exist at that time, and files were written on now obsolete hardware systems and outdated file formats. This requires creating metadata by reading the contents of the old data files. Some digital data files were corrupted over time, or were possibly improperly copied at the time of creation. Thus there are data gaps in the collections. The film strips were stored in boxes and are now being scanned as JPEG-2000 images. The only information describing these images is what was written on them when they were originally created, and sometimes this information is incomplete or missing. We have the ability to cross-reference the scanned images against the digital data files to determine which of these best represents the data set from the various missions, or to see how complete the data sets are. In this presentation we compared data files and scanned images from the Nimbus-2 High-Resolution Infrared Radiometer (HRIR) for September 1966 to determine whether the data and images are properly archived with correct metadata

    Data Recovery Effort of Nimbus Era Observations by the NASA GES DISC

    Get PDF
    NASA launched seven Nimbus meteorological satellites in the 1960s and 70s. These satellites carried instruments for making observations of the Earth in the visible, infrared, ultraviolet, and microwave wavelengths. The original data archive consisted of a combination of magnetic tapes and various film media. As these media are well past their expected end of life, the valuable data they contain are now being migrated to the GES DISC modern online archive. The process involves recovering the digital data files from the tapes as well as scanning images of the data from film strips. This presentation will address the status and challenges of recovering the Nimbus data. The old data products were written on now obsolete hardware systems and outdated file formats. They lack any metadata standards and each product is often written in its own proprietary file structure. This requires creating metadata by reading the contents of the old data files. The job is tedious and laborious, as documentation may be incomplete, data files and tapes are sometimes corrupted, or were improperly copied at the time they were created

    NASA Earth Science Data Rescue Efforts

    Get PDF
    Historically, at the end of a NASA mission, earth and space science data were stored at NASA's National Space Science Data Center (NSSDC). The original data archive consisted of both magnetic tapes and film media. As data storage technology improved, data from later missions were stored on disks and platters and higher capacity magnetic media for online accessibility. To conserve physical space at NASA archive sites and to meet disaster recovery guidelines, historical data originally stored on magnetic tapes and film were moved to the Federal Archives and Record Center (FRC) as a temporary holding area until its long-term value was determined by NASA. All records at the FRC are controlled by the NASA Records Retention Schedule (NRRS) which determines the disposal date for each record. On that date, responsible NASA parties are notified that all scheduled records should be reviewed and assessed to determine if they continue to hold significant historical, scientific or administrative value. For Earth Science data records being held at FRC, the Earth Science Data and Information System (ESDIS) Project office is the party responsible for making the value assessment that determines which records warrant preservation and which are ready for proper disposal according to NASA guidelines. Once the data's long-term value is determined, ESDIS takes definitive steps to preserve this data for future discovery and access. Deteriorating media containing historic data of value are recalled from FRC and brought back to ESDIS. Through a tedious, laborious process, digital data are recovered and restored to modern formats with improved metadata and documentation to aid discovery. The restored digital products are then incorporated into our modern online archive, and made immediately accessible to the public. In this paper, we will discuss how we identify data-at-risk, ways to minimize data loss, how we plan for recovery, how we delegate recovery activities to our archive facilities, and how we make recovered data more accessible

    Radiance Simulations in Support of Climate Services

    No full text
    International audienceClimate services are largely supported by climate reanalyses and by satellite Fundamental (Climate) Data Records (F(C)DRs). This paper demonstrates how the development and the uptake of F(C)DR benefit from radiance simulations, using reanalyses and radiative transfer models. We identify three classes of applications, with examples for each application class. The first application is to validate assumptions during F(C)DR development. Hereto we show the value of applying advanced quality controls to geostationary European (Meteosat) images. We also show the value of a cloud mask to study the spatio‐temporal coherence of the impact of the Mount Pinatubo volcanic eruption between Advanced Very High Resolution Radiometer (AVHRR) and the High‐resolution Infrared Radiation Sounder (HIRS) data. The second application is to assess the coherence between reanalyses and observations. Hereto we show the capability of reanalyses to reconstruct spectra observed by the Spektrometer Interferometer (SI‐1) flown on a Soviet satellite in 1979. We also present a first attempt to estimate the random uncertainties from this instrument. Finally, we investigate how advanced bias correction can help to improve the coherence between reanalysis and Nimbus‐3 Medium‐Resolution Infrared Radiometer (MRIR) in 1969. The third application is to inform F(C)DR users about particular quality aspects. We show how simulations can help to make a better‐informed use of the corresponding F(C)DR, taking as examples the Nimbus‐7 Scanning Multichannel Microwave Radiometer (SMMR), the Meteosat Second Generation (MSG) imager, and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Water Vapor Profiler (SSM/T‐2)
    corecore