10 research outputs found

    Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease

    Get PDF
    The pathophysiology of levodopa-induced dyskinesias (LID) in Parkinson’s disease is not well understood. We have recorded local field potentials (LFP) from macroelectrodes implanted in the subthalamic nucleus (STN) of 14 patients with Parkinson’s disease following surgical treatment with deep brain stimulation. Patients were studied in the ‘Off’ medication state and in the ‘On’ motor state after administration of levodopa– carbidopa (po) or apomorphine (sc) that elicited dyskinesias in 11 patients. The logarithm of the power spectrum of the LFP in selected frequency bands (4–10, 11–30 and 60–80 Hz) was compared between the ‘Off’ and ‘On’ medication states. A peak in the 11–30 Hz band was recorded in the ‘Off’ medication state and reduced by 45.2% (P < 0.001) in the ‘On’ state. The ‘On’ was also associated with an increment of 77. 6% (P < 0.001) in the 4–10 Hz band in all patients who showed dyskinesias and of 17.8% (P < 0.001) in the 60–80 Hz band in the majority of patients. When dyskinesias were only present in one limb (n = 2), the 4–10 Hz peak was only recorded in the contralateralSTN. These findings suggest that the 4–10 Hz oscillation is associated with the expression of LID in Parkinson’s disease

    Coordinated AR and microRNA regulation in prostate cancer

    Get PDF
    The androgen receptor (AR) remains a key driver of prostate cancer (PCa) progression, even in the advanced castrate-resistant stage, where testicular androgens are absent. It is therefore of critical importance to understand the molecular mechanisms governing its activity and regulation during prostate tumourigenesis. MicroRNAs (miRs) are small ∼22 nt non-coding RNAs that regulate target gene, often through association with 3' untranslated regions (3'UTRs) of transcripts. They display dysregulation during cancer progression, can function as oncogenes or tumour suppressors, and are increasingly recognised as targets or regulators of hormonal action. Thus, understanding factors which modulate miRs synthesis is essential. There is increasing evidence for complex and dynamic bi-directional cross-talk between the multi-step miR biogenesis cascade and the AR signalling axis in PCa. This review summarises the wealth of mechanisms by which miRs are regulated by AR, and conversely, how miRs impact AR's transcriptional activity, including that of AR splice variants. In addition, we assess the implications of the convergence of these pathways on the clinical employment of miRs as PCa biomarkers and therapeutic targets

    Efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson's disease 4 years after surgery: double blind and open label evaluation

    No full text
    Objective: To evaluate the long term (4 years) efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in advanced Parkinson's disease. Methods: We performed a double blind crossover evaluation of the efficacy of DBS of the STN in the "off" medication condition in 10 patients with Parkinson's disease. Assessments included the Unified Parkinson's Disease Rating Scale (UPDRS) part III (motor) and two timed tests (arm tapping and walking). Open evaluation of the effect of stimulation in the off and on drug states preoperatively and at 1 and 4 years postoperatively was also conducted. The latter assessment included the UPDRS parts II (activities of daily living) and III (dyskinesia scale and global assessment) as judged by the patient and examiner. The mean amount of levodopa daily dose at base line, 1 year, and 4 years after surgery was compared. Results: A significant (p<0.04) effect of stimulation was observed in the overall group regarding both the UPDRS motor and the timed tests. Open evaluation also showed a significant benefit of STN DBS with respect to preoperative assessment in both the motor and activities of daily living scales, dyskinesia scale, and in global assessment. Levodopa daily dose was reduced by 48% and 50% at 1 and 4 years, respectively. There was no difference between the 1 and 4 years evaluations in any of the parameters evaluated. Complications due to stimulation were minor. Conclusions: DBS of the STN provides a significant and persistent anti-parkinsonian effect in advanced Parkinson's disease 4 years after surgery

    Total Synthesis and Structure Assignment of the Relacidine Lipopeptide Antibiotics and Preparation of Analogues with Enhanced Stability

    No full text
    The unabated rise of antibiotic resistance has raised the specter of a post-antibiotic era and underscored the importance of developing new classes of antibiotics. The relacidines are a recently discovered group of nonribosomal lipopeptide antibiotics that show promising activity against Gram-negative pathogens and share structural similarities with brevicidine and laterocidine. While the first reports of the relacidines indicated that they possess a C-terminal five-amino acid macrolactone, an N-terminal lipid tail, and an overall positive charge, no stereochemical configuration was assigned, thereby precluding a full structure determination. To address this issue, we here report a bioinformatics guided total synthesis of relacidine A and B and show that the authentic natural products match our predicted and synthesized structures. Following on this, we also synthesized an analogue of relacidine A wherein the ester linkage of the macrolactone was replaced by the corresponding amide. This analogue was found to possess enhanced hydrolytic stability while maintaining the antibacterial activity of the natural product in both in vitro and in vivo efficacy studies

    Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up

    No full text
    Deep brain stimulation (DBS) is associated with significant improvement of motor complications in patients with severe Parkinson's disease after some 6-12 months of treatment. Long-term results in a large number of patients have been reported only from a single study centre. We report 69 Parkinson's disease patients treated with bilateral DBS of the subthalamic nucleus (STN, n = 49) or globus pallidus internus (GPi, n = 20) included in a multicentre study. Patients were assessed preoperatively and at 1 year and 3-4 years after surgery. The primary outcome measure was the change in the 'off' medication score of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III) at 3-4 years. Stimulation of the STN or GPi induced a significant improvement (50 and 39%; P < 0.0001) of the 'off' medication UPDRS-III score at 3-4 years with respect to baseline. Stimulation improved cardinal features and activities of daily living (ADL) (P < 0.0001 and P < 0.02 for STN and GPi, respectively) and prolonged the 'on' time spent with good mobility without dyskinesias (P < 0.00001). Daily dosage of levodopa was significantly reduced (35%) in the STN-treated group only (P < 0.001). Comparison of the improvement induced by stimulation at 1 year with 3-4 years showed a significant worsening in the 'on' medication motor states of the UPDRS-III, ADL and gait in both STN and GPi groups, and speech and postural stability in the STN-treated group. Adverse events (AEs) included cognitive decline, speech difficulty, instability, gait disorders and depression. These were more common in patients treated with DBS of the STN. No patient abandoned treatment as a result of these side effects. This experience, which represents the first multicentre study assessing the long-term efficacy of either STN or GPi stimulation, shows a significant and substantial clinically important therapeutic benefit for at least 3-4 years in a large cohort of patients with severe Parkinson's disease

    Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up.

    No full text
    Deep brain stimulation (DBS) is associated with significant improvement of motor complications in patients with severe Parkinson's disease after some 6-12 months of treatment. Long-term results in a large number of patients have been reported only from a single study centre. We report 69 Parkinson's disease patients treated with bilateral DBS of the subthalamic nucleus (STN, n = 49) or globus pallidus internus (GPi, n = 20) included in a multicentre study. Patients were assessed preoperatively and at 1 year and 3-4 years after surgery. The primary outcome measure was the change in the 'off' medication score of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III) at 3-4 years. Stimulation of the STN or GPi induced a significant improvement (50 and 39%; P < 0.0001) of the 'off' medication UPDRS-III score at 3-4 years with respect to baseline. Stimulation improved cardinal features and activities of daily living (ADL) (P < 0.0001 and P < 0.02 for STN and GPi, respectively) and prolonged the 'on' time spent with good mobility without dyskinesias (P < 0.00001). Daily dosage of levodopa was significantly reduced (35%) in the STN-treated group only (P < 0.001). Comparison of the improvement induced by stimulation at 1 year with 3-4 years showed a significant worsening in the 'on' medication motor states of the UPDRS-III, ADL and gait in both STN and GPi groups, and speech and postural stability in the STN-treated group. Adverse events (AEs) included cognitive decline, speech difficulty, instability, gait disorders and depression. These were more common in patients treated with DBS of the STN. No patient abandoned treatment as a result of these side effects. This experience, which represents the first multicentre study assessing the long-term efficacy of either STN or GPi stimulation, shows a significant and substantial clinically important therapeutic benefit for at least 3-4 years in a large cohort of patients with severe Parkinson's disease
    corecore