224 research outputs found

    Innovative strategies to predict and prevent the risk for malnutrition in child, adolescent, and young adult cancer survivors

    Get PDF
    Children, adolescents, and young adult cancer survivors (CAYAs) constitute a growing population requiring a customized approach to mitigate the incidence of severe complications throughout their lifetimes. During cancer treatment, CAYAs cancer survivors undergo significant disruptions in their nutritional status, elevating the risks of mortality, morbidity, and cardiovascular events. The assessment of nutritional status during cancer treatment involves anthropometric and dietary evaluations, emphasizing the necessity for regular assessments and the timely identification of risk factors. Proactive nutritional interventions, addressing both undernutrition and overnutrition, should be tailored to specific age groups and incorporate a family-centered approach. Despite encouraging interventions, a notable evidence gap persists. The goal of this review is to comprehensively examine the existing evidence on potential nutritional interventions for CAYAs cancer survivors. We explore the evidence so far collected on the nutritional intervention strategies elaborated for CAYAs cancer survivors that should target both undernutrition and overnutrition, being age-specific and involving a family-based approach. Furthermore, we suggest harnessing artificial intelligence (AI) to anticipate and prevent malnutrition in CAYAs cancer survivors, contributing to the identification of novel risk factors and promoting proactive, personalized healthcare

    The Role of Nutrition in Primary and Secondary Prevention of Cardiovascular Damage in Childhood Cancer Survivors

    Get PDF
    Innovative therapeutic strategies in childhood cancer led to a significant reduction in cancer-related mortality. Cancer survivors are a growing fragile population, at risk of long-term side effects of cancer treatments, thus requiring customized clinical attention. Antineoplastic drugs have a wide toxicity profile that can limit their clinical usage and spoil patients' life, even years after the end of treatment. The cardiovascular system is a well-known target of antineoplastic treatments, including anthracyclines, chest radiotherapy and new molecules, such as tyrosine kinase inhibitors. We investigated nutritional changes in children with cancer from the diagnosis to the end of treatment and dietary habits in cancer survivors. At diagnosis, children with cancer may present variable degrees of malnutrition, potentially affecting drug tolerability and prognosis. During cancer treatment, the usage of corticosteroids can lead to rapid weight gain, exposing children to overweight and obesity. Moreover, dietary habits and lifestyle often dramatically change in cancer survivors, who acquire sedentary behavior and weak adherence to dietary guidelines. Furthermore, we speculated on the role of nutrition in the primary prevention of cardiac damage, investigating the potential cardioprotective role of diet-derived compounds with antioxidative properties. Finally, we summarized practical advice to improve the dietary habits of cancer survivors and their families

    The Relationship between Gut Microbiota and Respiratory Tract Infections in Childhood: A Narrative Review

    Get PDF
    Respiratory tract infections (RTIs) are common in childhood and represent one of the main causes of hospitalization in this population. In recent years, many studies have described the association between gut microbiota (GM) composition and RTIs in animal models. In particular, the “inter-talk” between GM and the immune system has recently been unveiled. However, the role of GM in human, and especially infantile, RTIs has not yet been fully established. In this narrative review we provide an up-to-date overview of the physiological pathways that explain how the GM shapes the immune system, potentially influencing the response to common childhood respiratory viral infections and compare studies analysing the relationship between GM composition and RTIs in children. Most studies provide evidence of GM dysbiosis, but it is not yet possible to identify a distinct bacterial signature associated with RTI predisposition. A better understanding of GM involvement in RTIs could lead to innovative integrated GM-based strategies for the prevention and treatment of RTIs in the paediatric population

    Enteral nutrition protects children undergoing allogeneic hematopoietic stem cell transplantation from blood stream infections

    Get PDF
    Enteral Nutrition (EN) is recommended as first line nutritional support for patients undergoing Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT), but only few studies exist in the literature which compare EN to Parenteral Nutrition (PN) in the paediatric population. Forty-two consecutive paediatric patients undergoing allo-HSCT at our referral centre between January 2016 and July 2019 were evaluated. Post-transplant and nutritional outcomes of patients receiving EN for more than 7 days (EN group, n = 14) were compared with those of patients receiving EN for fewer than 7 days or receiving only PN (PN group, n = 28). In the EN group, a reduced incidence of Blood Stream Infections (BSI) was observed (p = 0.02) (n = 2 vs. n = 15; 14.3% vs. 53.6%). The type of nutritional support was also the only variable independently associated with BSI in the multivariate analysis (p = 0.03). Platelet engraftment was shorter in the PN group than in the EN group for a threshold of > 20*109/L (p = 0.04) (23.1 vs 35.7 days), but this correlation was not confirmed with a threshold of > 50*109/L. The Body Mass Index (BMI) and the BMI Z-score were no different in the two groups from admission to discharge. Our results highlight that EN is a feasible and nutritionally adequate method of nutritional support for children undergoing allo-HSCT in line with the present literature. Future functional studies are needed to better address the hypothesis that greater intestinal eubyosis maintained with EN may explain the observed reduction in BSI

    Exposure to outdoor air pollution and risk of hospitalization for bronchiolitis in an urban environment: A 9-year observational study

    Get PDF
    Background: Outdoor air pollution is supposed to influence the course of bronchiolitis, but the evidence is limited. The present study aimed at evaluating the role of outdoor air pollutants on hospitalization for bronchiolitis. Methods: Infants aged ≀12 months referred for bronchiolitis to our Pediatric Emergency Department in Bologna, Italy, from 1 October 2011 to 16 March 2020 (nine epidemic seasons) were retrospectively included. Daily concentrations of benzene (C6H6), nitrogen dioxide (NO2), particulate matter ≀2.5 ÎŒm (PM2.5), and ≀10 ÎŒm (PM10), and the mean values of individual patient exposure in the week and the 4 weeks before hospital access were calculated. The association between air pollutants exposure and hospitalization was evaluated through logistic regression analysis. Results: A total of 2902 patients were enrolled (59.9% males; 38.7% hospitalized). Exposure to PM2.5 in the 4 weeks preceding bronchiolitis was identified as the main parameter significantly driving the risk of hospitalization (odds ratio [95% confidence interval]: 1.055 [1.010–1.102]). After stratifying by season, higher values of other outdoor air pollutants were found to significantly affect hospitalization: 4-week exposure to C6H6 (Season 2011–2012, 4.090 [1.184–14.130]) and PM2.5 (Season 2017–2018, 1.282 [1.032–1.593]), and 1-week exposure to C6H6 (Season 2012–2013, 6.193 [1.552–24.710]), NO2 (Season 2013–2014, 1.064 [1.009–1.122]), PM2.5 (Season 2013–2014, 1.080 [1.023–1.141]), and PM10 (Season 2018–2019, 1.102 [0.991–1.225]). Conclusion: High levels of PM2.5, C6H6, NO2, and PM10 may increase the risk of hospitalization in children affected by bronchiolitis. Open-air exposure of infants during rush hours and in the most polluted areas should be avoided

    Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics

    Get PDF
    Visceral Leishmaniasis (VL) is a vector-borne disease caused by an intracellular protozoa of the genus Leishmania that can be lethal if not treated. VL is caused by Leishmania donovani in Asia and in Eastern Africa, where the pathogens’ reservoir is represented by humans, and by Leishmania infantum in Latin America and in the Mediterranean area, where VL is a zoonotic disease and dog is the main reservoir. A part of the infected individuals become symptomatic, with irregular fever, splenomegaly, anemia or pancytopenia, and weakness, whereas others are asymptomatic. VL treatment has made progress in the last decades with the use of new drugs such as liposomal amphotericin B, and with new therapeutic regimens including monotherapy or a combination of drugs, aiming at shorter treatment duration and avoiding the development of resistance. However, the same treatment protocol may not be effective all over the world, due to differences in the infecting Leishmania species, so depending on the geographical area. This narrative review presents a comprehensive description of the clinical picture of VL, especially in children, the diagnostic approach, and some insight into the most used pharmacological therapies available worldwide

    Gut resistome plasticity in pediatric patients undergoing hematopoietic stem cell transplantation

    Get PDF
    The gut microbiome of pediatric patients undergoing allo-hematopoietic stem cell transplantation (HSCT) has recently been considered as a potential reservoir of antimicrobial resistance, with important implications in terms of patient mortality rate. By means of shotgun metagenomics, here we explored the dynamics of the gut resistome \u2013 i.e. the pattern of antibiotic resistance genes provided by the gut microbiome \u2013 in eight pediatric patients undergoing HSCT, half of whom developed acute Graft-versus-Host Disease (aGvHD). According to our findings, the patients developing aGvHD are characterized by post-HSCT expansion of their gut resistome, involving the acquisition of new resistances, as well as the consolidation of those already present before HSCT. Interestingly, the aGvHD-associated bloom in resistome diversity is not limited to genes coding for resistance to the antibiotics administered along the therapeutic course, but rather involves a broad pattern of different resistance classes, including multidrug resistance, as well as resistance to macrolides, aminoglycosides, tetracyclines and beta-lactams. Our data stress the relevance of mapping the gut resistome in HSCT pediatric patients to define the most appropriate anti-infective treatment post HSCT

    In‐Depth Immunological Typization of Children with Sickle Cell Disease: A Preliminary Insight into Its Plausible Correlation with Clinical Course and Hydroxyurea Therapy

    Get PDF
    Sickle cell disease (SCD) is a condition of functional hypo‐/a‐splenism in which predisposition to bacterial infections is only a facet of a wide spectrum of immune‐dysregulation disorders forming the clinical expression of a peculiar immunophenotype. The objective of this study was to perform an in‐depth immunophenotypical characterization of SCD pediatric patients, looking for plausible correlations between immunological biomarkers, the impact of hydroxyurea (HU) treatment and clinical course. This was an observational case–control study including 43 patients. The cohort was divided into two main groups, SCD subjects (19/43) and controls (24/43), differing in the presence/absence of an SCD diagnosis. The SCD group was split up into HU+ (12/19) and HU− (7/19) subgroups, respectively receiving or not a concomitant HU treatment. The principal outcomes measured were differences in the immunophenotyping between SCD patients and controls through chi‐squared tests, t‐tests, and Pearson’s correlation analysis between clinical and immunological parameters. Leukocyte and neutrophil increase, T‐cell depletion with prevalence of memory T‐cell compartment, NK and B‐naïve subset elevation with memory and CD21low B subset reduction, and IgG expansion, significantly distinguished the SCD HU− subgroup from controls, with naïve T cells, switched‐memory B cells and IgG maintaining differences between the SCD HU+ group and controls (p‐value of <0.05). The mean CD4+ central‐memory T‐cell% count was the single independent variable showing a positive correlation with vaso‐occlusive crisis score in the SCD group (Pearson’s R = 0.039). We report preliminary data assessing plausible clinical implications of baseline and HU‐related SCD immunophenotypical alterations, which need to be validated in larger samples, but potentially affecting hypo‐/a‐splenism immuno‐chemoprophylactic recommendations

    Engineered mucoperiosteal scaffold for cleft palate regeneration towards the non-immunogenic transplantation

    Get PDF
    Cleft lip and palate (CL/P) is the most prevalent craniofacial birth defect in humans. None of the surgical procedures currently used for CL/P repair lead to definitive correction of hard palate bone interruption. Advances in tissue engineering and regenerative medicine aim to develop new strategies to restore palatal bone interruption by using tissue or organ-decellularized bioscaffolds seeded with host cells. Aim of this study was to set up a new natural scaffold deriving from a decellularized porcine mucoperiosteum, engineered by an innovative micro-perforation procedure based on Quantum Molecular Resonance (QMR) and then subjected to in vitro recellularization with human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Our results demonstrated the efficiency of decellularization treatment gaining a natural, non-immunogenic scaffold with preserved collagen microenvironment that displays a favorable support to hMSC engraftment, spreading and differentiation. Ultrastructural analysis showed that the micro-perforation procedure preserved the collagen mesh, increasing the osteoinductive potential for mesenchymal precursor cells. In conclusion, we developed a novel tissue engineering protocol to obtain a non-immunogenic mucoperiosteal scaffold suitable for allogenic transplantation and CL/P repair. The innovative micro-perforation procedure improving hMSC osteogenic differentiation potentially impacts for enhanced palatal bone regeneration leading to future clinical applications in humans

    Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis

    Get PDF
    Hematopoietic stem cell transplantation (HSCT) is the first-line immunotherapy to treat several hematologic disorders, although it can be associated with many complications reducing the survival rate, such as acute graft-versus-host disease (aGvHD) and infections. Given the fundamental role of the gut microbiome (GM) for host health, it is not surprising that a suboptimal path of GM recovery following HSCT may compromise immune homeostasis and/or increase the risk of opportunistic infections, with an ultimate impact in terms of aGvHD onset. Traditionally, the first nutritional approach in post-HSCT patients is parenteral nutrition (PN), which is associated with several clinical adverse effects, supporting enteral nutrition (EN) as a preferential alternative. The aim of the study was to evaluate the impact of EN vs. PN on the trajectory of compositional and functional GM recovery in pediatric patients undergoing HSCT. The GM structure and short-chain fatty acid (SCFA) production profiles were analyzed longitudinally in twenty pediatric patients receiving HSCT-of which, ten were fed post-transplant with EN and ten with total PN. According to our findings, we observed the prompt recovery of a structural and functional eubiotic GM layout post-HSCT only in EN subjects, thus possibly reducing the risk of systemic infections and GvHD onset
    • 

    corecore