10,829 research outputs found

    Bose-Einstein correlations: a study of an invariance group

    Full text link
    A group of transformations changing the phases of the single particle density matrix, but leaving unchanged the predictions for identical particles concerning the momentum distributions, momentum correlations etc., is identified. Its implications for the determinations of the interaction region from studies of Bose-Einstein correlations are discussed.Comment: 15 pages LateX + one figure ep

    Mass dependence of HBT correlations in e^+e^- annihilation

    Get PDF
    Mass dependence of the effective source radii, observed in hadronic Z0Z^0 decays by several LEP I experiments, is analyzed in a model which assumes proportionality between four-momentum of a produced particle and the four-vector describing its space-time position at the freeze-out. It is shown that this relation (commonly accepted in description of high-energy collisions) can explain the data, provided all particles are emitted from a "tube" of 1\sim 1 fm in diameter at a constant proper time 1.5\sim 1.5 fm.Comment: 15 pages, 3 figure

    High-spin intruder states in the fp shell nuclei and isoscalar proton-neutron correlations

    Full text link
    We perform a systematic shell-model and mean-field study of fully-aligned, high-spin f_{7/2}^{n} seniority isomers and d_{3/2}^{-1} f_{7/2}^{n+1} intruder states in the A~44 nuclei from the lower-fp shell. The shell-model calculations are performed in the full sdfp configuration space allowing 1p-1h cross-shell excitations. The self-consistent mean-field calculations are based on the Hartree-Fock approach with the Skyrme energy density functional that reproduces empirical Landau parameters. While there is a nice agreement between experimental and theoretical relative energies of fully-aligned states in N>Z nuclei, this is no longer the case for the N=Z systems. The remaining deviation from the data is attributed to the isoscalar proton-neutron correlations. It is also demonstrated that the Coulomb corrections at high spins noticeably depend on the choice of the energy density functional.Comment: 4 pages. submitted to Phys. Rev. Let

    Surface-peaked effective mass in the nuclear energy density functional and its influence on single-particle spectra

    Full text link
    Calculations for infinite nuclear matter with realistic nucleon-nucleon interactions suggest that the isoscalar effective mass of a nucleon at the saturation density, m*/m, equals 0.8 +/- 0.1. This result is at variance with empirical data on the level density in finite nuclei, which are consistent with m*/m ~ 1. Ma and Wambach suggested that these two contradicting results may be reconciled within a single theoretical framework by assuming a radial-dependent effective mass, peaked at the nuclear surface. The aim of this exploratory work is to investigate this idea within the density functional theory by using a Skyrme-type local functional enriched with new terms, τ(ρ)2\tau (\mathbf{\nabla}\rho)^2 and τdρdr\tau\frac{d\rho}{dr}, where τ\tau and ρ\rho denote the kinetic and particle densities, respectively. We show that each of these terms can give rise to a surface peak in the effective mass, but of a limited height. We investigate the influence of the radial profile of the effective mass on the spin-orbit splittings and centroids. In particular, we demonstrate that the τdρdr\tau \frac{d\rho}{dr} term quenches the 1f5/2-1f7/2 splitting in 40Ca, which is strongly overestimated within conventional Skyrme parametrizations.Comment: 8 pages, 8 figures, submitted to Phys. Rev.

    An absorption spectrum amplifier for determining gas composition

    Get PDF
    Compositions of gas samples are frequently studied by laser absorption spectroscopy. Sensitivity is improved by two orders of magnitude when absorption cell is placed inside an organic-dye laser cavity

    Spin-orbit and tensor mean-field effects on spin-orbit splitting including self-consistent core polarizations

    Full text link
    A new strategy of fitting the coupling constants of the nuclear energy density functional is proposed, which shifts attention from ground-state bulk to single-particle properties. The latter are analyzed in terms of the bare single-particle energies and mass, shape, and spin core-polarization effects. Fit of the isoscalar spin-orbit and both isoscalar and isovector tensor coupling constants directly to the f5/2-f7/2 spin-orbit splittings in 40Ca, 56Ni, and 48Ca is proposed as a practical realization of this new programme. It is shown that this fit requires drastic changes in the isoscalar spin-orbit strength and the tensor coupling constants as compared to the commonly accepted values but it considerably and systematically improves basic single-particle properties including spin-orbit splittings and magic-gap energies. Impact of these changes on nuclear binding energies is also discussed.Comment: 15 pages, 7 figures, submitted to Physical Review

    Spatial distribution and reduction of PCDD/PCDF Toxic Equivalents along three shallow lowland reservoirs

    Get PDF
    Reservoirs situated along a river continuum are ecosystems where rates of transfer of suspended matter and associated micropollutants are reduced due to sedimentation, accumulation, and biological and physical transformation processes. Among the micropollutants, PCDDs and PCDFs are substances that are highly toxic and carcinogenic for humans and animals. They are emitted and dispersed in the environment throughout the whole catchment area and may accumulate in aquatic and terrestrial food chains, creating a risk for human health. A wealth of data exists indicating the increase in the concentrations of pollutants along a river continuum. A comparative analysis of total, individual, and TEQ PCDD/PCDF concentrations in large lowland, shallow reservoirs located in different catchments (“I”—industrial/urban/ agricultural, “U”—urban/agricultural, and “A”—agricultural/ rural) showed decreases of the TEQ concentrations in bottom sediments along a gradient from the middle sections to the dam walls. Moreover, penta-, hexa-, and heptachlorinated CDD/CDF congeners were reduced from 28.8 up to 93.6 % in all three types of reservoirs. A further analysis of water samples from the inlets and outlets of the “A” reservoir confirmed this tendency.The authors wish to express their sincere appreciation to Prof. Konrad Rydzyński from the Nofer Institute of Occupational Medicine in Lodz, Prof. Richard Robarts from the UNEP Global Environment Monitoring System (GEMS)/Water Programme, Prof. Paul DuBowy from the U.S. Army Corps of Engineers, and Prof. David Harper from the Department of Biology, the University of Leicester for their constructive comments on an earlier version of this paper. The authors also wish to acknowledge the research team of the Nofer Institute of Occupational Medicine in Lodz: Dr Danuta Ligocka and Dr Wiktor Wesołowski for their assistance during the laboratory processes. The research was supported by the following projects of the Polish Ministry of Science and Higher Education: – N N305 365738 “Analysis of point sources pollution of nutrients, dioxins and dioxin-like compounds in the Pilica River catchment and draw up of reclamation methods”; – 2PO4 G08830 “Accumulation of dioxins and dioxin-like pollutants in the food chain of the Sulejowski and Włocławski Reservoirs: chemometric analysis and toxicological estimation”
    corecore