179 research outputs found

    El ensayo de micronúcleos como medida de inestabilidad genética inducida por agentes genotóxicos

    Get PDF
    Human genetic integrity is compromised by the intense industrial activity, which emphasizes the importance to determine an "acceptable" genetic damage level and to carry out routine genotoxicity assays in the populations at risk. Micronuclei are cytoplasmatic bodies of nuclear origin which correspond to genetic material that is not correctly incorporated in the daughter cells in the cellular division; they reflect the existence of chromosomal aberrations and are originated by chromosomal breaks, replication errors followed by cellular division of the DNA and/or exposure to genotoxic agents. There are several factors able to modify the number of micronuclei present in a given cell, among them are age, gender, vitamins, medical treatments, daily exposure to genotoxic agents, etc. The cytogenetic assay for the detection of micronuclei (CBMN: cytokinesis-block micronucleus) is based on the use of a chemical agent, cytochalasin-B, which is able to block cytocinesis but allowing the nuclear division, therefore yielding binucleated and monodivided cells. The micronuclei scoring is performed on 1000 binucleated cells and the starting sample may vary, although most studies are performed on peripheral blood lymphocytes. The micronuclei assay is considered a practical, universally validated and technically feasible protocol which is useful to evaluate the genetic instability induced by genotoxic agent

    Methotrexate in Pediatric Osteosarcoma: Response and Toxicity in Relation to Genetic Polymorphisms and Dihydrofolate Reductase and Reduced Folate Carrier 1 Expression

    Get PDF
    To determine the influence of the genotype and the level of expression of different enzymes involved in folate metabolism on the response to and toxicity of high-dose methotrexate treatment in pediatric osteosarcomas. STUDY DESIGN: DHFR and Reduced folate carrier 1 (RFC1) semiquantitative expression was analyzed in 34 primary and metastatic osteosarcoma tissues by real-time polymerase chain reaction. The following polymorphisms were also analyzed in peripheral blood from 96 children with osteosarcoma and 110 control subjects: C677T, A1298C (MTHFR), G80A (RFC1), A2756G (MTR), C1420T (SHMT), the 28bp-repeat polymorphism, and 1494del6 of the TYMS gene. Treatment toxicity was scored after each cycle according to criteria from the World Health Organization. RESULTS: DHFR and RFC1 expression was lower in initial osteosarcoma biopsy specimens than in metastases (P = .024 and P = .041, respectively). RFC1 expression was moderately decreased in samples with poor histologic response to preoperative treatment (P = .053). Patients with osteosarcoma with G3/G4 hematologic toxicity were more frequently TT than CT/CC for C677T/MTHFR (P = .023) and GG for A2756G/MTR (P = .048 and P = .057 for gastrointestinal and hematologic toxicity, respectively). CONCLUSIONS: The role of C677T/MTHFR and A2756G/MTR on chemotherapy-induced toxicity should be further investigated in pediatric osteosarcomas receiving high-dose methotrexate. Altered expression of DHFR and RFC1 is a feasible mechanism by which osteosarcoma cells become resistant to methotrexate

    Effect of ABCB1 and ABCC3 Polymorphisms on Osteosarcoma Survival after Chemotherapy: A Pharmacogenetic Study

    Get PDF
    Standard treatment for osteosarcoma patients consists of a combination of cisplatin, adriamycin, and methotrexate before surgical resection of the primary tumour, followed by postoperative chemotherapy including vincristine and cyclophosphamide. Unfortunately, many patients still relapse or suffer adverse events. We examined whether common germline polymorphisms in chemotherapeutic transporter and metabolic pathway genes of the drugs used in standard osteosarcoma treatment may predict treatment response. METHODOLOGY/PRINCIPAL FINDINGS: In this study we screened 102 osteosarcoma patients for 346 Single Nucleotide Polymorphisms (SNPs) and 2 Copy Number Variants (CNVs) in 24 genes involved in the metabolism or transport of cisplatin, adriamycin, methotrexate, vincristine, and cyclophosphamide. We studied the association of the genotypes with tumour response and overall survival. We found that four SNPs in two ATP-binding cassette genes were significantly associated with overall survival: rs4148416 in ABCC3 (per-allele HR = 8.14, 95%CI = 2.73-20.2, p-value = 5.1x10(-)(5)), and three SNPs in ABCB1, rs4148737 (per-allele HR = 3.66, 95%CI = 1.85-6.11, p-value = 6.9x10(-)(5)), rs1128503 and rs10276036 (r(2) = 1, per-allele HR = 0.24, 95%CI = 0.11-0.47 p-value = 7.9x10(-)(5)). Associations with these SNPs remained statistically significant after correction for multiple testing (all corrected p-values [permutation test] </= 0.03). CONCLUSIONS: Our findings suggest that these polymorphisms may affect osteosarcoma treatment efficacy. If these associations are independently validated, these variants could be used as genetic predictors of clinical outcome in the treatment of osteosarcoma, helping in the design of individualized therapy

    Profiling of chemonaive osteosarcoma and paired-normal cells identifies EBF2 as a mediator of osteoprotegerin inhibition to tumor necrosis factor–related apoptosis-inducing ligand–induced apoptosis

    Get PDF
    Osteosarcoma is the most prevalent bone tumor in children and adolescents. At present, the mechanisms of initiation, maintenance, and metastasis are poorly understood. The purpose of this study was to identify relevant molecular targets in the pathogenesis of osteosarcoma. EXPERIMENTAL DESIGN: Tumor chemonaive osteoblastic populations and paired control normal osteoblasts were isolated and characterized phenotypically from seven osteosarcoma patients. Global transcriptomic profiling was analyzed by robust microarray analysis. Candidate genes were confirmed by real-time PCR and organized in molecular pathways. EBF2 and osteoprotegerin (OPG) levels were determined by real-time PCR and OPG protein levels were assessed by ELISA. Immunohistochemical analysis was done in a panel of 46 osteosarcoma samples. Silencing of EBF2 was achieved by lentiviral transduction of short hairpin RNA. Apoptosis was determined by caspase-3/7 activity. RESULTS: A robust clustered transcriptomic signature was obtained in osteosarcoma. Transcription factor EBF2, a known functional bone regulator, was among the most significantly overexpressed genes. Immunohistochemical analysis showed that osteosarcoma is expressed in approximately 70% of tumors analyzed. Because EBF2 was shown previously to act as a transcriptional activator of OPG, elevated levels of EBF2 were associated with high OPG protein levels in osteosarcoma samples compared with normal osteoblastic cells. Knockdown of EBF2 led to stunted abrogation of OPG levels and increased sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. CONCLUSIONS: These findings suggest that EBF2 represents a novel marker of osteosarcoma. EBF2 up-regulation may be one of the mechanisms involved in the high levels of OPG in osteosarcoma, contributing to decrease TRAIL-induced apoptosis and leading to TRAIL resistance

    Extracting relevant predictive variables for COVID-19 severity prognosis: An exhaustive comparison of feature selection techniques

    Get PDF
    With the COVID-19 pandemic having caused unprecedented numbers of infections and deaths, large research efforts have been undertaken to increase our understanding of the disease and the factors which determine diverse clinical evolutions. Here we focused on a fully data-driven exploration regarding which factors (clinical or otherwise) were most informative for SARS-CoV-2 pneumonia severity prediction via machine learning (ML). In particular, feature selection techniques (FS), designed to reduce the dimensionality of data, allowed us to characterize which of our variables were the most useful for ML prognosis. We conducted a multi-centre clinical study, enrolling n=1548 patients hospitalized due to SARS-CoV-2 pneumonia: where 792, 238, and 598 patients experienced low, medium and high-severity evolutions, respectively. Up to 106 patient-specific clinical variables were collected at admission, although 14 of them had to be discarded for containing ⩾60% missing values. Alongside 7 socioeconomic attributes and 32 exposures to air pollution (chronic and acute), these became d=148 features after variable encoding. We addressed this ordinal classification problem both as a ML classification and regression task. Two imputation techniques for missing data were explored, along with a total of 166 unique FS algorithm configurations: 46 filters, 100 wrappers and 20 embeddeds. Of these, 21 setups achieved satisfactory bootstrap stability (⩾0.70) with reasonable computation times: 16 filters, 2 wrappers, and 3 embeddeds. The subsets of features selected by each technique showed modest Jaccard similarities across them. However, they consistently pointed out the importance of certain explanatory variables. Namely: patient’s C-reactive protein (CRP), pneumonia severity index (PSI), respiratory rate (RR) and oxygen levels –saturation SpO2, quotients SpO2/RR and arterial SatO2/FiO2 –, the neutrophil-to-lymphocyte ratio (NLR) –to certain extent, also neutrophil and lymphocyte counts separately–, lactate dehydrogenase (LDH), and procalcitonin (PCT) levels in blood. A remarkable agreement has been found a posteriori between our strategy and independent clinical research works investigating risk factors for COVID-19 severity. Hence, these findings stress the suitability of this type of fully data-driven approaches for knowledge extraction, as a complementary to clinical perspectives

    Cortactin (CTTN) overexpression in osteosarcoma correlates with advanced stage and reduced survival

    Get PDF
    The cortactin (CTTN) gene has been found, by transcriptomic profiling, to be overexpressed in pediatric osteosarcoma. The location of CTTN at 11q13 and the role of cortactin in cytoskeleton restructuring make CTTN of interest as a potential biomarker for osteosarcoma. MATERIALS AND METHODS: Osteoblasts were isolated from 20 high-grade osteosarcomas before chemotherapy, and paired with cell samples from normal tissue, prior to RNA expression analysis on HG-U133A chips (Affymetrix). Semiquantitative CTTN mRNA expression was analyzed by real-time PCR. An osteosarcoma tissue microarray (TMA) containing 233 tissue spots from 48 patients was used for an immunohistochemical (IHC) study of cortactin. RESULTS: Transcriptomic profiling and real-time PCR analysis indicated increased CTTN expression in osteosarcomas (p = 0.001, Student's T test). TMA IHC showed cortactin to be present more frequently and in greater abundance in osteosarcomas than non-tumoral osteoblastic samples (p< 0.006, Mann-Withney test). Analysis of clinical outcomes indicated that overall survival for patients with primary tumors positive for cortactin was significantly lower than that for patients with cortactin negative (or only weakly staining) tumors (p = 0.0278, Log-rank test). CONCLUSIONS: Our preliminary data support the hypothesis that over-expression of cortactin, contained in the 11q13 amplicon, is involved in osteosarcoma carcinogenesis. The potential of cortactin overexpression as a biomarker for osteosarcoma is consolidated

    Impact of outdoor air pollution on severity and mortality in COVID-19 pneumonia

    Get PDF
    The relationship between exposure to air pollution and the severity of coronavirus disease 2019 (COVID-19) pneumonia and other outcomes is poorly understood. Beyond age and comorbidity, risk factors for adverse outcomes including death have been poorly studied. The main objective of our study was to examine the relationship between exposure to outdoor air pollution and the risk of death in patients with COVID-19 pneumonia using individual-level data. The secondary objective was to investigate the impact of air pollutants on gas exchange and systemic inflammation in this disease. This cohort study included 1548 patients hospitalised for COVID-19 pneumonia between February and May 2020 in one of four hospitals. Local agencies supplied daily data on environmental air pollutants (PM10PM_{10}, PM2.5PM_{2.5}, O3O_3, NO2NO_2, NONO and NOXNO_X) and meteorological conditions (temperature and humidity) in the year before hospital admission (from January 2019 to December 2019). Daily exposure to pollution and meteorological conditions by individual postcode of residence was estimated using geospatial Bayesian generalised additive models. The influence of air pollution on pneumonia severity was studied using generalised additive models which included: age, sex, Charlson comorbidity index, hospital, average income, air temperature and humidity, and exposure to each pollutant. Additionally, generalised additive models were generated for exploring the effect of air pollution on C-reactive protein (CRP) level and SpO2O_2/FiO2O_2 at admission. According to our results, both risk of COVID-19 death and CRP level increased significantly with median exposure to PM10PM_{10}, NO2NO_2, NONO and NOXNO_X, while higher exposure to NO2NO_2, NONO and NOXNO_X was associated with lower SpO2O_2/FiO2O_2 ratios. In conclusion, after controlling for socioeconomic, demographic and health-related variables, we found evidence of a significant positive relationship between air pollution and mortality in patients hospitalised for COVID-19 pneumonia. Additionally, inflammation (CRP) and gas exchange (SpO2O_2/FiO2O_2) in these patients were significantly related to exposure to air pollution

    The C-Terminal Domain of the Novel Essential Protein Gcp Is Critical for Interaction with Another Essential Protein YeaZ of Staphylococcus aureus

    Get PDF
    Previous studies have demonstrated that the novel protein Gcp is essential for the viability of various bacterial species including Staphylococcus aureus; however, the reason why it is required for bacterial growth remains unclear. In order to explore the potential mechanisms of this essentiality, we performed RT-PCR analysis and revealed that the gcp gene (sa1854) was co-transcribed with sa1855, yeaZ (sa1856) and sa1857 genes, indicating these genes are located in the same operon. Furthermore, we demonstrated that Gcp interacts with YeaZ using a yeast two-hybrid (Y2H) system and in vitro pull down assays. To characterize the Gcp-YeaZ interaction, we performed alanine scanning mutagenesis on the residues of C-terminal segment of Gcp. We found that the mutations of the C-terminal Y317-F322 region abolished the interaction of Gcp and YeaZ, and the mutations of the D324-N329 and S332-Y336 regions alleviated Gcp binding to YeaZ. More importantly, we demonstrated that these key regions of Gcp are also necessary for the bacterial survival since these mutated Gcp could not complement the depletion of endogenous Gcp. Taken together, our data suggest that the interaction of Gcp and YeaZ may contribute to the essentiality of Gcp for S. aureus survival. Our findings provide new insights into the potential mechanisms and biological functions of this novel essential protein
    • …
    corecore