1,768 research outputs found
Extended phase space for a spinning particle
Extended phase space of an elementary (relativistic) system is introduced in
the spirit of the Souriau's definition of the `space of motions' for such
system. Our formulation is generally applicable to any homogeneous space-time
(e.g. de Sitter) and also to Poisson actions. Calculations concerning the
Minkowski case for non-zero spin particles show an intriguing alternative: we
should either accept two-dimensional trajectories or (Poisson) noncommuting
space-time coordinates.Comment: 12 pages, late
Phase spaces related to standard classical -matrices
Fundamental representations of real simple Poisson Lie groups are Poisson
actions with a suitable choice of the Poisson structure on the underlying
(real) vector space. We study these (mostly quadratic) Poisson structures and
corresponding phase spaces (symplectic groupoids).Comment: 20 pages, LaTeX, no figure
Free motion on the Poisson SU(n) group
SL(N,C) is the phase space of the Poisson SU(N). We calculate explicitly the
symplectic structure of SL(N,C), define an analogue of the Hamiltonian of the
free motion on SU(N) and solve the corresponding equations of motion. Velocity
is related to the momentum by a non-linear Legendre transformation.Comment: LaTeX, 10 page
Some Comments on BPS systems
We look at simple BPS systems involving more than one field. We discuss the
conditions that have to be imposed on various terms in Lagrangians involving
many fields to produce BPS systems and then look in more detail at the simplest
of such cases. We analyse in detail BPS systems involving 2 interacting
Sine-Gordon like fields, both when one of them has a kink solution and the
second one either a kink or an antikink solution. We take their solitonic
static solutions and use them as initial conditions for their evolution in
Lorentz covariant versions of such models. We send these structures towards
themselves and find that when they interact weakly they can pass through each
other with a phase shift which is related to the strength of their interaction.
When they interact strongly they repel and reflect on each other. We use the
method of a modified gradient flow in order to visualize the solutions in the
space of fields.Comment: 27 pages, 17 figure
Spontaneous emission of non-dispersive Rydberg wave packets
Non dispersive electronic Rydberg wave packets may be created in atoms
illuminated by a microwave field of circular polarization. We discuss the
spontaneous emission from such states and show that the elastic incoherent
component (occuring at the frequency of the driving field) dominates the
spectrum in the semiclassical limit, contrary to earlier predictions. We
calculate the frequencies of single photon emissions and the associated rates
in the "harmonic approximation", i.e. when the wave packet has approximately a
Gaussian shape. The results agree well with exact quantum mechanical
calculations, which validates the analytical approach.Comment: 14 pages, 4 figure
Non-dispersive wave packets in periodically driven quantum systems
With the exception of the harmonic oscillator, quantum wave-packets usually spread as time evolves. We show here that, using the nonlinear resonance between an internal frequency of a system and an external periodic driving, it is possible to overcome this spreading and build non-dispersive (or non-spreading) wave-packets which are well localized and follow a classical periodic orbit without spreading. From the quantum mechanical point of view, the non-dispersive wave-packets are time periodic eigenstates of the Floquet Hamiltonian, localized in the nonlinear resonance island. We discuss the general mechanism which produces the non-dispersive wave-packets, with emphasis on simple realization in the electronic motion of a Rydberg electron driven by a microwave field. We show the robustness of such wavepackets for a model one-dimensional as well as for realistic three dimensional atoms. We consider their essential properties such as the stability versus ionization, the characteristic energy spectrum and long lifetimes. The requirements for experiments aimed at observing such non-dispersive wave-packets are also considered. We also discuss other related phenomena in atomic and molecular physics as well as possible further extensions of the theory
- …
