44 research outputs found

    Report on influenza viruses received and tested by the Melbourne WHO Collaborating Centre for Reference and Research on Influenza in 2017

    Get PDF
    As part of its role in the World Health Organization’s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 5866 human influenza positive samples during 2017. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties and were propagated in qualified cells and hens’ eggs for use as potential seasonal influenza vaccine virus candidates. In 2017, influenza A(H3) viruses predominated over influenza A(H1)pdm09 and B viruses, accounting for a total of 54% of all viruses analysed. The majority of A(H1)pdm09, A(H3) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the Southern Hemisphere in 2017. However, phylogenetic analysis indicated that the majority of circulating A(H3) viruses had undergone genetic drift relative to the WHO recommended vaccine strain for 2017. Of 3733 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, only two A(H1)pdm09 viruses and one A(H3) virus showed highly reduced inhibition by oseltamivir, while just one A(H1)pdm09 virus showed highly reduced inhibition by zanamivir.The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health. MXT was supported by an Australian Government Research Training Program Scholarship

    FIBRE OPTICAL COUPLER SIMULATION BY COMSOL MULTIPHYSICS SOFTWARE

    Get PDF
    Funding: The research has been supported by the European Regional Development Fund project No.1.1.1.1/18/A/068. The Institute of Solid State Physics, University of Latvia as a Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.The paper presents a simulation model developed for a special optical coupler intended for coupling radiation from signal and pump sources used for the realization of cladding-pumped doped fibre amplifiers. The model is developed in COMSOL Multiphysics and used to assess the pumping efficiency for different side pumping angles and different numbers of electromagnetic modes. The obtained results show that the highest pumping efficiency, above 75 %, is achieved for 5–14 modes when two fibres representing the pump source and the signal source form a 10-degree angle between their central axes. The search for the optimal number of modes corresponds to the development trend in optical coupler technology where the multimode pumping by light-emitting diode (LED) replaces the classical scheme with a single-mode pumping by a laser diode (LD). © 2022 Sciendo. All rights reserved. --//-- This is an open access article Elsts E., Supe A., Spolitis S., Zakis K., Olonkins S., Udalcovs A., Murnieks R., Senkans U., Prigunovs D., Gegere L., Draguns K., Lukosevics I., Ozolins O., Grube J., Bobrovs V. FIBRE OPTICAL COUPLER SIMULATION BY COMSOL MULTIPHYSICS SOFTWARE (2022) Latvian Journal of Physics and Technical Sciences, 59 (5), pp. 3 - 14, DOI: 10.2478/lpts-2022-0036 published under the CC BY-NC-ND 4.0 licence.ERDF No.1.1.1.1/18/A/068; The Institute of Solid State Physics, University of Latvia as a Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    Get PDF
    Capability to characterize lignin, lignocellulose, and their degradation products is essential for development of new renewable feedstocks. Electrospray ionization high-resolution time-offlight mass spectrometry (ESI HR TOF MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di- and triarene lignin model compounds as well as intact lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol·L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9,000 Da or higher, depending on the mass analyzer. The obtained Mn and Mw values of 1,500 and 2,500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrixassisted laser desorption/ionization (MALDI) TOF MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ESI ion mobility HR Q-TOF MS

    Implementation of a Web-based remote control system for qZS DAB application using low-cost ARM platform

    No full text
    Continuous development of intelligent network applications drives the demand for deployment-ready hardware and software solutions. Such solutions are highly valued not only by distributed producers of energy but by energy consumers as well. The use of intelligent network applications enables the development and improvement of the quality of services. It also increases self-sufficiency and efficiency. This paper describes an example of such device that allows for the control of a dual active bridge (DAB) converter and enables its remote control in real time over an IP-based network. The details of both hardware and software components of proposed implementation are provided. The DAB converter gives a possibility to control and manage the energy between two DC power systems with very different voltage levels. Not only information, but also the quality of energy, the direction of power flow, and energy storage systems can be easily controlled through an IP-based network and power electronics converters. Information technology, together with intelligent control of power electronics technology, provides a flexible solution, especially for sustainable smart grids
    corecore