5,289 research outputs found

    Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation

    Full text link
    By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter

    New multidimensional partially integrable generalization of S-integrable N-wave equation

    Full text link
    This paper develops a modification of the dressing method based on the inhomogeneous linear integral equation with integral operator having nonempty kernel. Method allows one to construct the systems of multidimensional Partial Differential Equations (PDEs) having the differential polynomial forms in any dimension n. Associated solution space is not full, although it is parametrized by a certain number of arbitrary functions of (n-1)-variables. We consider 4-dimensional generalization of the classical (2+1)-dimensional S-integrable N-wave equation as an example.Comment: 38 page

    Two-dimensional ring-like vortex and multisoliton nonlinear structures at the upper-hybrid resonance

    Full text link
    Two-dimensional (2D) equations describing the nonlinear interaction between upper-hybrid and dispersive magnetosonic waves are presented. Nonlocal nonlinearity in the equations results in the possibility of existence of stable 2D nonlinear structures. A rigorous proof of the absence of collapse in the model is given. We have found numerically different types of nonlinear localized structures such as fundamental solitons, radially symmetric vortices, nonrotating multisolitons (two-hump solitons, dipoles and quadrupoles), and rotating multisolitons (azimuthons). By direct numerical simulations we show that 2D fundamental solitons with negative hamiltonian are stable.Comment: 8 pages, 6 figures, submitted to Phys. Plasma

    Weak Wave Turbulence Scaling Theory for Diffusion and Relative Diffusion in Turbulent Surface Waves

    Get PDF
    We examine the applicability of the weak wave turbulence theory in explaining experimental scaling results obtained for the diffusion and relative diffusion of particles moving on turbulent surface waves. For capillary waves our theoretical results are shown to be in good agreement with experimental results, where a distinct crossover in diffusive behavior is observed at the driving frequency. For gravity waves our results are discussed in the light of ocean wave studies.Comment: 5 pages; for related work visit http://www.imedea.uib.es/~victo

    Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves

    Full text link
    We study the long-time evolution of gravity waves on deep water exited by the stochastic external force concentrated in moderately small wave numbers. We numerically implement the primitive Euler equations for the potential flow of an ideal fluid with free surface written in canonical variables, using expansion of the Hamiltonian in powers of nonlinearity of up to fourth order terms. We show that due to nonlinear interaction processes a stationary energy spectrum close to kk7/2|k| \sim k^{-7/2} is formed. The observed spectrum can be interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of energy.Comment: 4 pages, 5 figure

    On integration of some classes of (n+1)(n+1) dimensional nonlinear Partial Differential Equations

    Full text link
    The paper represents the method for construction of the families of particular solutions to some new classes of (n+1)(n+1) dimensional nonlinear Partial Differential Equations (PDE). Method is based on the specific link between algebraic matrix equations and PDE. Admittable solutions depend on arbitrary functions of nn variables.Comment: 6 page

    On the relationship between nonlinear equations integrable by the method of characteristics and equations associated with commuting vector fields

    Full text link
    It was shown recently that Frobenius reduction of the matrix fields reveals interesting relations among the nonlinear Partial Differential Equations (PDEs) integrable by the Inverse Spectral Transform Method (SS-integrable PDEs), linearizable by the Hoph-Cole substitution (CC-integrable PDEs) and integrable by the method of characteristics (ChCh-integrable PDEs). However, only two classes of SS-integrable PDEs have been involved: soliton equations like Korteweg-de Vries, Nonlinear Shr\"odinger, Kadomtsev-Petviashvili and Davey-Stewartson equations, and GL(N,\CC) Self-dual type PDEs, like Yang-Mills equation. In this paper we consider the simple five-dimensional nonlinear PDE from another class of SS-integrable PDEs, namely, scalar nonlinear PDE which is commutativity condition of the pair of vector fields. We show its origin from the (1+1)-dimensional hierarchy of ChCh-integrable PDEs after certain composition of Frobenius type and differential reductions imposed on the matrix fields. Matrix generalization of the above scalar nonlinear PDE will be derived as well.Comment: 14 pages, 1 figur
    corecore