86 research outputs found

    Laminated Wave Turbulence: Generic Algorithms II

    Full text link
    The model of laminated wave turbulence puts forth a novel computational problem - construction of fast algorithms for finding exact solutions of Diophantine equations in integers of order 101210^{12} and more. The equations to be solved in integers are resonant conditions for nonlinearly interacting waves and their form is defined by the wave dispersion. It is established that for the most common dispersion as an arbitrary function of a wave-vector length two different generic algorithms are necessary: (1) one-class-case algorithm for waves interacting through scales, and (2) two-class-case algorithm for waves interacting through phases. In our previous paper we described the one-class-case generic algorithm and in our present paper we present the two-class-case generic algorithm.Comment: to appear in J. "Communications in Computational Physics" (2006

    Rogue waters

    Full text link
    In this essay we give an overview on the problem of rogue or freak wave formation in the ocean. The matter of the phenomenon is a sporadic occurrence of unexpectedly high waves on the sea surface. These waves cause serious danger for sailing and sea use. A number of huge wave accidents resulted in damages, ship losses and people injuries and deaths are known. Now marine researchers do believe that these waves belong to a specific kind of sea waves, not taken into account by conventional models for sea wind waves. This paper addresses to the nature of the rogue wave problem from the general viewpoint based on the wave process ideas. We start introducing some primitive elements of sea wave physics with the purpose to pave the way for the further discussion. We discuss linear physical mechanisms which are responsible for high wave formation, at first. Then, we proceed with description of different sea conditions, starting from the open deep sea, and approaching the sea cost. Nonlinear effects which are able to cause rogue waves are emphasised. In conclusion we briefly discuss the generality of the physical mechanisms suggested for the rogue wave explanation; they are valid for rogue wave phenomena in other media such as solid matters, superconductors, plasmas and nonlinear opticsComment: will be published in Contemporary Physic

    A review of career devoted to biophotonics-in memoriam to Ekaterina Borisova (1978-2021)

    Get PDF
    Regretfully, because of her sudden demise, Assoc. Prof. Ekaterina Borisova is no longer amongst us. COVID-19 pulled away a brilliant scientist during the peak of her scientific career (see Fig. 1). All authors would like to express deepest condolences and sincere support to her family, friends, relatives and colleagues! We, therefore, rightfully commemorate her dedicated and devoted contribution to biophotonics, her readiness to always support, help, motivate and inspire all her colleagues and collaborators

    CATMoS: Collaborative Acute Toxicity Modeling Suite.

    Get PDF
    BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD50 (LD50≤50mg/kg)], and nontoxic chemicals (LD50>2,000mg/kg). METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495

    Перераспределение, производство и неравенство

    No full text
    We use an infinite-dimensional Lotka–Volterra model to analyze production, accumulation, and redistribution of wealth in an economy. We show that, if the amount of wealth produced in the economy is small relative to the amount redistributed, the eventual distribution of wealth will be extremely unequal, with all of it being concentrated in single hands in the limit case. The winner’s identity is determined by his ability to redistribute and produce wealth. Similar outcomes are observed in some physical processes. Article is published in the authors’ wording.Мы используем бесконечномерную модель Лотки–Вольтерра для анализа производства, накопления и перераспределения богатства в экономике. Мы показываем, что если объем производства по сравнению с объемом перераспределения невелик, то итоговое распределение богатства будет очень неравным. В предельном случае, все богатство будет сконцентрировано в одних руках. Личность победителя определяется его способностью производить и перераспределять богатство. Похожие исходы можно наблюдать и для некоторых физических процессов. Статья публикуется в авторской редакции
    corecore