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Abstract

Structural alerts are widely accepted in chemical toxicology and regulatory decision support as a 

simple and transparent means to flag potential chemical hazards or group compounds into 

categories for read-across. However, there has been a growing concern that alerts disproportionally 

flag too many chemicals as toxic, which questions their reliability as toxicity markers. Conversely, 

the rigorously developed and properly validated statistical QSAR models can accurately and 
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reliably predict the toxicity of a chemical; however, their use in regulatory toxicology has been 

hampered by the lack of transparency and interpretability. We demonstrate that contrary to the 

common perception of QSAR models as “black boxes” they can be used to identify statistically 

significant chemical substructures (QSAR-based alerts) that influence toxicity. We show through 

several case studies, however, that the mere presence of structural alerts in a chemical, irrespective 

of the derivation method (expert-based or QSAR-based), should be perceived only as hypotheses 

of possible toxicological effect. We propose a new approach that synergistically integrates 

structural alerts and rigorously validated QSAR models for a more transparent and accurate safety 

assessment of new chemicals.
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Introduction

Over the past few decades, environmental chemists have been under increasing political and 

public pressure to ensure that hazardous chemicals must be identified and replaced by 

“greener”, i.e., safer alternatives1,2 while avoiding animal testing of every chemical, which is 

also both financially and experimentally unsustainable.3 In addition, animal models have 

received much criticism as being unethical, exorbitantly expensive, and unreliable for 

extrapolating results and findings to humans.4

Computational models have earned recognition as reliable, fast, and inexpensive alternatives 

for the toxicity evaluation of chemicals during the early stages of drug discovery or 

environmental safety assessment.5 This assessment often relies on structural alerts, chemical 

grouping, and read-across. Structural alerts,6 otherwise known as “expert rules”, are 

molecular substructures that are associated with a particular adverse outcome.7 The 

popularity of alerts dates back to a series of studies published in late 80s and early 90s on 

chemical carcinogenicity and mutagenicity.8–12 As the name suggests, expert rules are based 

on human expertise and are intended to reflect the chemical basis of the mechanism of 

action or, at least, the molecular initiating event in the case of more complex endpoints.13
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Alerts are used to flag potential hazards and to group compounds into categories for read-

across (Figure 1).14 Chemical read-across is a data gap filling procedure to assess certain 

endpoint effect of a chemical by using data for the same endpoint from another chemical (or 

a group of chemicals), which is (are) considered structurally similar.15 These methods have 

earned acceptance among toxicologists due to their simplicity, transparency, and ease 

ofinterpretation.16 However, although chemical read across has been accepted by regulatory 

agencies, there have been observations that this approach is prone to bias.17–20 On the other 

hand, though supported by rigorously evaluated statistical significance, Quantitative 

Structure-Activity Relationships (QSAR) modeling is usually considered as a “black box”21, 

referencing the perceived lack of interpretability (Figure 1).

The use of structural alerts and QSAR models (often collectively referred to as (Q)SAR) 

have become a major concept in chemical safety assessment and regulatory decision support 

since the acceptance of Registration, Evaluation, Authorization, and Restriction of 

Chemicals (REACH) legislation in 2006 by the European Union.22 This law compels 

manufacturers to provide detailed information on chemicals that are manufactured, 

marketed, or imported. In the United States, the Environmental Protection Agency (EPA) has 

been using (Q)SAR methods to support a weight-of-evidence in the hazard assessment of 

chemicals under the US Toxic Substances Control Act (TSCA).23

Qualitative approaches, such as alerts, chemical grouping, and read-across, have been 

incorporated into several computerized expert systems, often employing additional layers of 

secondary modulating effects around each generic expert alert (e.g., OECD QSAR 

Toolbox24, OCHEM ToxAlerts25, Lhasa’s Derek26, etc.). Also, because analyzing and 

processing large volumes of experimental data by human experts can be very slow, current 

expert-based systems often use statistical approaches to discover candidate substructures 

strongly associated with the target activity. These candidate substructures are then reviewed 

and curated by experts in the field to provide mechanistic interpretation.

Albeit less commonly appreciated, statistically-based QSAR models can indeed afford 

mechanistic interpretation.27 However, the difficulty of interpreting QSAR models, 

especially by non-experts in the field, has led regulatory agencies to prefer the use of simple 

structural alerts for the prediction of various properties. On the other hand, the ability of 

QSAR to provide a reliable quantitative assessment of the toxicity potential of a chemical is 

highly advantageous. Hence, there is a strong need for the development of a method that 

would combine the predictive power of QSAR models while maintaining transparency for 

expert evaluation. Recently, integrative approaches of QSAR and read-across have been 

proposed by our28 and other groups.29–31 Specifically, we have proposed chemical-

biological read-across (CBRA), which combines quantitative toxicity prediction with a 

visualization methodology, ensuring both high predictivity and interpretability of models.28

In this paper, we have compared, contrasted, and attempted to consolidate the two major 

modern approaches to toxicity assessment. Our objectives were to: (i) investigate the 

reliability of structural alerts for chemical toxicity and safety assessment; (ii) highlight the 

advantages and liabilities of both structural alerts and QSAR modeling; (iii) alarm users 

about the danger of blindly using structural alerts as sole toxicity predictors; and (iv) 
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introduce a new toxicity prediction framework integrating SAR rules and QSAR-based 

approaches to increase both the transparency and accuracy of predictions.

How reliable are alerts for predicting chemical toxicity?

It is worth noting at the onset of this perspective that terms, such as “toxic/non-toxic”, 

“sensitizer/non-sensitizer”, and “safe/unsafe” have been used in this paper for simplicity. We 

fully realize that defining respective biological phenomena in absolute terms is an 

oversimplification, since the assignment of a chemical to a category, e.g., toxic or non-toxic, 

depends on the dose or exposure and on the designated threshold of toxicity for a particular 

endpoint.

As mentioned in the Introduction, alerts have been widely accepted because they can be 

easily generated and interpreted. These advantages notwithstanding, there has been a 

growing concern that alerts have limited utility for accurate toxicity assessment. One 

obvious concern is that most alerts represent functional groups or substructures that can be 

found in many, both toxic and non-toxic compounds, leading to predictions with overly high 

sensitivity18 but low specificity. As we discuss below, this phenomenon may be because 

chemical properties of substructures depend on other groups in the molecule that could 

influence the reactivity of the substructural alert.

This flaw in the prediction accuracy has caused controversy in the evaluation of the power of 

alerts by the scientific community. The Organization for Economic Co-operation and 

Development Organization (OECD) characterizes read-across as a technique used to predict 

a determined endpoint, but requires that expert judgement is needed and that a justification 

should be provided.32 The OECD sponsored the development of QSAR Toolbox24, a 

software application to predict (eco)toxicity based on chemical grouping and read-across 

that leaves the assessment of the prediction to the end user.33

Another software, Toxtree (http://toxtree.sourceforge.net/), has a skin sensitization module 

that implements structural alerts.34 Contributing to the confusion about the significance of 

alerts as toxicity predictors, the developers of Toxtree recently placed a statement on their 

website35 that they changed the name of the module from “Skin sensitization alerts” to 

“Skin sensitization reactivity domain” explaining that alerts provide only grouping into a 

reactivity mode of action and do not predict skin sensitization potential. Although not 

explicitly reported, this conspicuous change in nomenclature is most likely due to pitfalls 

and deficiencies in the method. For instance, the use of simple categories led to the 

misclassification of 25% of compounds evaluated for the respiratory sensitization, including 

non-sensitizers containing alerts, and sensitizers, that did not contain alerts.36

In another example, Hewitt et al.37 developed new structural alerts for hepatotoxicity but 

also found that many alerts were likewise present in non-hepatotoxic drugs. Ironically, the 

authors still declared that they had developed a scheme capable of generating 

mechanistically-supported structural alerts suitable for identifying chemicals with 

hepatotoxic potential. Nevertheless, recognizing the inherent contradiction of their findings, 

they stated that these alerts are not a model to be used for the prediction of hepatotoxicity. In 
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another study,38 the authors could not assign an unambiguous mode of action for most of the 

identified liver and kidney toxicity alerts. In the paper describing the ToxAlerts tool25, the 

developers have commented on the limitation of alerts as a helpful technique for flagging 
potentially toxic compounds but not necessarily predicting toxicity.

Contrasting alerts and QSAR-based predictions

Skin sensitization, being a major environmental and occupational health hazard,39 represents 

a highly illustrative opportunity to contrast the results of QSAR modeling and alert-based 

approaches. The aforementioned OECD QSAR Toolbox has a special module for this 

endpoint, which makes the comparison straightforward.

Previously, we have developed and published skin sensitization QSAR models17 that we 

compare here with the outcome of the LLNA node of OECD QSAR Toolbox24 and OCHEM 

ToxAlerts25 web server. To make the comparison fair, we only use compounds (i) not 

present in databases and (ii) inside the applicability domain of our models. Therefore, 90 

compounds (38 sensitizers and 52 non-sensitizers) were used for comparison with QSAR 

Toolbox, and 246 compounds (160 sensitizers and 86 non-sensitizers) were used for 

comparison with ToxAlerts. Our models showed a significantly higher prediction accuracy 

for the same sets of external compounds when compared to both alerts-based tools as 

evaluated by Positive Predictive Value (PPV), Specificity, Negative Predictive Value (NPV), 

and Correct Classification Rate (CCR) (Table 1). Although predictions made with QSAR 

Toolbox and ToxAlerts show higher sensitivity than our models when evaluating the same 

set of structures, our models featured a much higher PPV. These results indicate that the 

probability of correctly classifying sensitizers is much higher using QSAR models and that 

alert-based predictions have a bias towards sensitizers.

In Table 2, we show three examples of structural alerts flagged by QSAR Toolbox or by 

ToxAlerts: activated pyridine/pyrimidine, formyl group (aldehydes), and aromatic amines. In 

addition, we compare experimental toxicity assessment with predictions obtained by our 

QSAR models for compounds containing the alert substructures obtained by QSAR Toolbox 

or ToxAlerts. As one can see, all compounds with an activated pyridine/pyrimidine subgroup 

are non-sensitizers in LLNA assays. These compounds were flagged as sensitizers by QSAR 

Toolbox, but correctly predicted as non-sensitizers by the QSAR models. Molecules 

containing two other alerts flagged by ToxAlerts (formyl group and aromatic amines) are not 

always the sensitizers: examples are provided by 3-hydroxy-4-methoxybenzaldehyde 

(correctly predicted by QSAR as a non-sensitizer) and (2E)-2-methyl-2-butenal (incorrectly 

predicted by QSAR as a sensitizer) that contain the formyl group. We also identified the 

following eleven non-sensitizers containing five or more ToxAlerts each: 3-hydroxy-4-

methoxybenzaldehyde, vanillin (ten alerts both), and ethyl vanillin (nine alerts) (see 

Supplementary Information). These results highlight that the presence of even multiple 

structural alerts for skin sensitization does not automatically suggest that the respective 

compounds are toxic and as such should be avoided in commercial products. At the same 

time, our results show that externally validated QSAR models afford higher accuracy of 

assessing chemical toxicity than structural alerts.
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Another example to contrast alerts and QSAR-based predictions is provided by two well-

known alerts for the hERG blockage. The hERG K+ channels (or simply hERG) are known 

to have an essential contribution to heartbeat regulation, and its blockage is closely 

associated with lethal cardiac arrhythmia.40 This channel has been earmarked as one of the 

most important anti-targets to be considered in the early stages of drug development due to 

its high ligand promiscuity.41 Recently, we developed a freely available webserver for the 

early identification of putative hERG blockers and non-blockers named Pred-hERG (http://

labmol.farmacia.ufg.br/predherg/), based on binary and multiclass QSAR models.42,43

The presence of a tertiary amine is one of the most well defined substructure alert for hERG 

blockage.44,45 Previously,43 we showed sixteen examples of changes in electronic and steric 

environment of the tertiary amine that could transform a potent hERG blocker to a less 

potent blocker or even to a non-blocker. In the studied dataset, 5,984 compounds (3,436 

blockers and 2,548 non-blockers) contained at least one tertiary amine. Employing this alert 

only, the positive predictive value (PPV) is 0.57 while QSAR will give a PPV of 0.86. Using 

tertiary amines to flag hERG blockers would result in a high false positive outcome. Another 

alert for hERG, arylchloride, follows the same trend. In the studied dataset, 1,277 

compounds with at least one arylchloride substructure (854 blockers and 423 non-blockers) 

were found. Using this alert only, the PPV is 0.67, while QSAR yields a PPV of 0.80. The 

use of this alert as a predictor results in a CCR of 0.50, whereas the QSAR approach, which 

correctly predicts non-blockers, results in CCR of 0.78.

In another example, we employed structural alerts to analyze the difference between safe 

and unsafe drugs.46 This previously described dataset46 included thirteen withdrawn drugs 

and seven drugs currently on the market. All withdrawn drugs display significant toxicity 

and side effect. Here, we have used predictions made by previously published QSAR 

models46 and profiled the compounds with the alerts from the QSAR Toolbox.

The calculated toxicity alerts for the marketed and withdrawn drugs are shown in Table S1 

(see Supplementary Information). All withdrawn drugs were predicted as “High, Class III” 

by toxic hazard models. Only three marketed drugs were expectably predicted as “Low, 

Class I”. However, four marketed drugs (Valtrex, Microzide, Neurontin and Enoxaparin) 

were classified as dangerous (Class III). The majority of both the withdrawn and marketed 

drugs were considered as safe (no alerts) by “Carcinogenicity”, “DNA alerts”, “In vitro 

mutagenicity”, and both types of “Protein binding alerts”. On the other hand, all marketed 

drugs (excluding Fenfluramine and Valtrex) were predicted to have the “in vivo 
mutagenicity” alerts. Thus, all 20 drugs were found to contain at least one alert that 

categorized them as unsafe. These results show that it is impossible to distinguish the “safe” 

marketed from “unsafe” withdrawn drugs using the established toxicity alerts, providing yet 

another illustration of the weakness of structural alerts as reliable drug safety predictors. At 

the same time, the toxicity of these drugs was reliably assessed by QSAR models (see Table 

S1).
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Complexity of chemical structure questions the significance of single alerts

Structural alerts highlight the importance of specific structural features as determinants of 

compound toxicity.14 However, biological effects are measured for the entire molecules, 

raising doubts that a fragment can always adequately define the property of the whole 

molecule. We examine this interplay between the fragment and the whole molecular 

structure using a few case studies.

Previously, we have developed QSAR models for predicting binding affinities of ligands to 

thyroid hormone receptor (THR).47 By interpreting developed models,27 we can gain insight 

into structural features responsible for the binding affinity of ligands to receptors and guide 

structural modifications that will modulate binding affinity of ligands. Figure 2 shows that a 

small change such as replacement of carboxymethyl by carboxyethyl substituent in the same 

position in a molecule causes changes in many descriptor values. Thus, when a new 

fragment is added, many descriptors can change their values, reflecting the interconnectivity 

and mutual influence of all fragments in the molecule.47

The same concept of the mutual influence of substituents in the molecule can be much better 

illustrated by several studies on the effects of substituents on the toxicity of the 

nitroaromatics.48–51 In these studies, we have developed QSAR models for rat acute toxicity 

of nitroaromatics using Simplex Representation of Molecular Structure (SiRMS) 

descriptors52 and Partial Least Squares modeling approach.53 Interpretation of developed 

models following the protocol described elsewhere54 demonstrated that although an 

aromatic ring with a nitro group or groups usually increases toxicity, its contribution varies 

widely depending on the nature and number of other substituents in the aromatic ring. Thus, 

our main finding was that although an aromatic nitro group is considered as a toxicophore55, 

its contribution to toxicity could be significantly modified by other substituents.

This finding can be illustrated using an example of chlorosubstituted nitrobenzenes (Figure 

3). Although one could expect that an increase of the number of chlorine substituents would 

result in an increase of toxicity, the influence of chlorine is ambiguous and strongly depends 

on the structural environment. For instance, a chlorine atom in the ortho-position to the nitro 

group is present in both the most toxic compounds (2,6-dichloronitrobenzene) and the least 

toxic compounds (2,3,5-trichloronitrobenzene). Overall, the insertion of a chlorine 

substituent in nitrobenzene increases its toxicity; the ortho-isomer is the most toxic. 

Introduction of the second chlorine results in the large toxicity changes, which are observed 

for dichloronitrobenzenes.48 Addition of chlorine substituents decreases the difference in 

toxicity between the isomers. Moreover, the accumulation of chlorine atoms in the benzene 

ring decreases their influence on toxicity, i.e., the increase in toxicity is not proportional to 

the number of chlorine atoms or, even more, the addition of chlorine decreases the toxicity.48

We also analyzed the effect of sequential insertion of chlorine substituents into the benzene 

ring.48 In Figure 4, the toxicity of each molecule is represented as six separate contributions 

of the corresponding carbon of the aromatic ring and its substituent. Insertion of a chlorine 

atom in the ortho-position to the nitro group leads to toxicity increase in comparison with 

nitrobenzene. This effect is not limited to the chlorine atom only. In fact, the contributions to 
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toxicity of all other atoms are augmented (except C–H bond in ortho-position to the C–Cl 

bond, Figure 4). Insertion of an additional chlorine adjacent to the previous ortho-chlorine 

has only a small effect on toxicity. Although the new C–Cl bond (position 3) increases the 

toxicity of the molecule, the contributions of the nitro group and other C–Cl fragment 

(position 2) have been diminished. Thus, in spite of the redistribution of influence on 

toxicity between different fragments of 2,3-dichloronitrobenzene, the toxicity of the whole 

compound hardly changes compared to 2-chloronitrobenzene. A dramatic change in toxicity 

was predicted for 2,3,5-trichloronitrobenzene. Substitution of hydrogen by chlorine in 

position 5 results in substantial lowering of toxicity. This resulted in the diminishing toxicity 

of all analyzed fragments, especially chlorine in position 2.48

Several examples discussed in this section emphasize the important conclusion that 

compound toxicity can be substantially affected by the mutual interference between its 

structural components. Moreover, individual substructures are not acting directly and 

independently, as is saliently presumed by the structural alerts concept. Instead, various 

substructures, even including distant neighbors, mutually influence their contributions. 

Interpretation of QSAR models could help not only to find such substructures, but also 

identify their preferred neighbors and their relative position in the molecule to increase or 

decrease the desired and undesired properties of the molecule, respectively, which provides 

an avenue toward computationally-driven design of green chemicals. Examples of molecular 

design driven by structural hypotheses generated by the interpretation of QSAR models are 

discussed in the next section.

Interpretation of QSAR models: Pulling the rabbit out of the black box

An important benefit of cheminformatics analysis is the use of structural alerts established 

from the interpretation of QSAR models and/or cluster analysis to design new compounds 

with improved characteristics. Although QSAR modeling is usually referred to as a “black 

box” approach, many studies conducted both by our group alone,27,56 or in collaboration 

with other groups,57,58 and by other groups59–61 have shown that the models could be 

interpreted in terms of structural features responsible for activity or toxicity.

Interpretation of properly validated models could result in statistically-significant structural 

alerts that could be very useful in the molecular design of novel compounds with desired 

properties. We can illustrate this point by several QSAR studies of antiviral activity, in 

which we successfully designed novel potent compounds using structural alerts derived from 

QSAR models.52,62–67 The workflow used in these studies is shown in Figure 5 using the 

design of agents against rhinovirus 2 as an example. First, we collected, curated, and 

integrated all information related to the target of interest and compounds hitting this target 

(Figure 5A). In the next step, QSAR models were developed and rigorously validated 

(Figure 5B). Then, inverse task solution was performed using one of the approaches for the 

interpretation of QSAR models developed by our group in previous years.56,58,66 For 

illustration, we color-coded atoms and structural fragments of the modeling set compounds 

according to their partial contributions to the overall activity of the molecule identified by 

QSAR models. Examples of such color-coded structures are shown in Figure 5C. Atoms and 

structural fragments enhancing or reducing antiviral activity are colored in red or green, 
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respectively, whilst indifferent atoms are colored in gray. As can be seen from Figure 5C, the 

contribution of the same structural moiety in different molecules can vary dramatically, 

which demonstrates again the strong influence of structural surroundings of a fragment on 

the properties of molecules. Analysis of such color-coded structures and the contributions of 

surrounding-dependent fragments throughout the whole training set is very useful for 

targeted design of new compounds. Next, the average contributions of considered fragments 

are summarized by all properties of interest (Figure 5D). This allows the obtained trends to 

be transformed into structural alerts covering not only presence or absence of a certain 

substituent, but also its various physical-chemical properties. For instance, in the study of 

activity of [(biphenyloxy)propyl]isoxazole derivatives against rhinovirus, we have 

established the requirements for the length and charge of the terminal substituent in the 

molecule (Figure 5E). In the last step of our workflow (Figure 5F), these alerts were 

successfully used in the design of novel antiviral agents against influenza62, herpes63,64, 

rhinovirus65, and coxsackievirus67.

In another example of structural optimization, we used QSAR models of skin sensitization17 

and skin permeability68 to delineate a putative pathway of structural optimization to improve 

chemical properties using both imputed data from QSAR models and experimental data. We 

illustrated this approach using an example of putative stepwise structural optimization of the 

permeability of pentanoic acid, considering experimental data and predictions using 

developed models (Figure 6). Starting from this compound of relatively low permeability 

(logKp = −2.7), several transformation steps can increase its permeability more than 10-fold 

and convert it to n-heptanol (logKp = −1.50). N-heptanol is predicted as a sensitizer, which 

is confirmed by its Material Safety Data Sheet entry,69 but it can be transformed to octanoic 

acid, which has similar permeability (logKp = −1.60) as n-heptanol while lacking its 

sensitization potential. Similar schemes concerning various environmental toxicity endpoints 

could be extremely useful in green chemistry to design safe schemes of synthesis of new 

compounds of interest.68

Integration of structural alerts and QSAR

Using the example of aquatic toxicity of nitroaromatic compounds against Tetrahymena 
pyriformis, we demonstrated earlier50 that, in addition to producing statistically-sound 

structural alerts that influence activity, it is beneficial to combine mechanism-based alerts 

with QSAR predictions. Structural alerts were used to classify the investigated compounds 

into two putative mechanisms of action (redox cyclers and nucleophilic attack). Compounds 

lacking these alerts could not be assigned any mechanism and formed the third subset. We 

succeeded in developing two robust and predictive mechanism-based (local) QSAR models 

for Tetrahymena pyriformis. These models, however, had a limited applicability domain. No 

acceptable models were built for the third subset. Next, we used all compounds to build a 

mechanism-free (global) consensus model, which had much better coverage, but was less 

predictive. Expectedly, mechanism-based local models for redox cyclers were unable to 

predict the toxicity of compounds acting through nucleophilic attack and vice versa. Thus, 

structural alerts could be useful in combination with local QSAR model to enable the correct 

prognosis of toxicity.
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The best results were achieved by choosing the most appropriate of the two local models for 

predicting a new compound possessing structural alerts. If a new compound lacked the 

alerts, global model should be used. Compared to traditional local and global models, this 

approach affords the highest external predictive accuracy and the largest coverage.

Similar results were obtained for the skin sensitization dataset. Although protein binding is 

an initiating event for skin sensitization and protein-binding alerts are based on well-

established organic chemistry principles, existing alerts alone cannot predict skin sensitizers 

efficiently. However, if there are enough data, alerts could be used for assigning a 

mechanism of action to investigate compounds and to develop local QSAR models (Table 

S2). The latter could be united with mechanism-ignorant global model in a consensus 

ensemble that will have comparable or higher predictive power and coverage than separate 

models (Table S3).

Another approach to overcome the drawbacks of individual structural alerts is the Chemical-

Biological Read-Across (CBRA),28 which infers the activity of a compound from those of 

its chemical and biological analogs. CBRA assesses the similarity between chemical 

substances based on their (i) computed structural properties classically regarded as chemical 
descriptors or (ii) experimentally-obtained or predicted results of biological measurements 

regarded as biological descriptors. The methodology of CBRA is described elsewhere in 

great details.28 We conceived CBRA as a next-generation read-across to better comprehend 

the complexity of toxicity prediction.28

CBRA can be visually represented as a radial plot (see Figure 7). The compound of interest 

is represented by a large central node surrounded by additional nodes representing the k-

nearest neighbors in biological (left side) and in the chemical (right side) space. Each 

neighbor-node is colored based on its observed activity (e.g., red = toxic, green = non-toxic). 

The relative position of each neighbor-node from the central compound-node is based on the 

Tanimoto similarity between these two compounds: the more similar two compounds are, 

the closer to the central node the neighbor-node is. The nearest neighbors in both chemical 

and biological space (i.e., shortest edges) are placed closest to the 12 o'clock position.

CBRA plots provide a visual means of studying the structure-activity relationships for a 

given compound or a cluster of similar compounds. This is especially useful for 

understanding: (i) the neighborhood (whether there are common neighbors between the 

chemical space and the biological space) and (ii) the activity landscape in which the 

compound resides (whether neighbors have common activities). Thus, CBRA can identify 

activity and/or similarity cliffs, which can be leveraged to guide the design of greener 

chemicals.

In utilizing a similarity-weighted aggregation, CBRA maximizes the complementarities 

between chemical and biological data. In particular, conflicting predictions from chemical 

and biological models are resolved, resulting in overall accuracy gains. CBRA was 

compared with other hybrid approaches such as pooling the chemical and biological space 

into a hybrid space and straightforward ensemble modeling, which equally weigh 
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predictions from a chemical model and a biological model. On four datasets, CBRA was 

equivalent to or better than the other two hybrid approaches.28

CBRA combines the simplicity and transparency of read-across methods with the benefits 

afforded by more sophisticated techniques such as ensemble modeling and instance-based 

learning.70 Another advantage is the use of not only chemical but also biological data to 

increase the reliability of chemical hazard assessment. The performance of CBRA may be 

further optimized by setting a similarity threshold or by optimizing the number of chemical 

or biological neighbors separately. The drawback of this method is that it requires biological 

data to make new predictions. However, this deficiency could be overcome by developing 

conventional QSAR models of all contributing biological assays as will be presented by our 

group in a separate publication elsewhere.

Summary

In this paper we have discussed the potential caveats of using structural alerts alone for risk 

assessment as well as the more reliable and yet less interpretable predictive performance of 

QSAR models. The simple use of alerts for chemical read-across has been pointed out as an 

erroneous application. Therefore, read-across should be used to help an expert to make a 

final decision only after analyzing all available information sources, e.g., QSAR predictions, 

in vitro and in vivo outcomes, etc.71–73 Obviously, only rigorously validated approaches 

could be used as such sources of information.

As we have shown, structural alerts are extremely promiscuous if used alone to predict 

biological activity and their use may be harmful in the drug discovery pipeline as well as for 

the safety assessment. Thus, there is a need to develop novel methods that would combine 

the transparency and interpretability of structural alerts with the predictive power of QSAR 

models.

Multiple examples of computational toxicity studies considered in this paper suggest a 

synergism of structural alerts and QSAR models to predict activity or toxicity. Structural 

alerts can affect the design of safer compounds. However, the global effect of such 

modification can only be predicted by a QSAR model and not by isolated alerts alone. These 

considerations advance the integration of structural alerts and QSAR models for designing 

novel compounds and predicting their toxicity.

In summary, in place of the status quo shown in Figure 1, we propose an integrative 

approach for safety assessment of new chemicals using both structural alerts and QSAR 

models (Figure 8). In this approach, the alerts serve as transparent hypotheses (which could 

be derived by traditional SAR analysis or model interpretation) that can be either reinforced 

or refuted by statistically significant and externally validated QSAR models. Any alert 

should be viewed as a structural hypothesis of chemical action, but its predictive power 

should be buttressed by QSAR predictions and, if possible, by experimental validation.
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Conclusions

We position this paper as a programmatic statement that could potentially transform the 

mindsets of both researchers and regulators. We especially would like to stress that we did 

not only wish to alarm the scientific community about the limitations of structural alerts, 

which could be very useful for understanding of the underlying toxicity mechanisms. Our 

main goals were to show how the toxicity prediction should not be done by blindly relying 

on structural alerts as well as how to boost safety assessment by combining the strongest 

parts of the alerts and QSAR models.

We have demonstrated that blind reliance on structural alerts could lead researchers astray. 

We are not suggesting to use QSAR models instead of structural alerts. Although in this 

study we compared both approaches and demonstrated that “black box” QSAR predictions 

usually provide the user with statistically more accurate predictions, we also showed how 

alerts could serve as actionable structural hypotheses that could be validated by QSAR 

predictions. We have proposed an integrative approach for designing new green chemicals 

by the structural modification of existing functional but toxic compounds using a 

combination of structural alerts and QSAR models.

Another important point is that the influence of any part of compound on its biological effect 

is not constant and strongly depends on its structural environment. Thus, any alert, even 

derived by mechanistic interpretation of statistically significant QSAR models does not have 

automatic predictive power. Alerts should be viewed as a structural hypothesis of chemical 

action only and their true predictive power should be confirmed by QSAR predictions and, if 

possible, by experimental validation.

The major recommendations discussed in our paper are as follows:

• Toxicity prediction solely based on structural alerts is unreliable in most cases 

and should be avoided;

• Regardless of how alerts are identified, they act within the whole chemical 

structure and therefore their effect on chemical toxicity is dependent on their 

structural environment; the extent of interdependency should be evaluated on 

large datasets;

• Once the alert is identified by any method, its significance should be confirmed 

by QSAR models or, even better, by experiment;

• Structural alerts should be combined with QSAR and/or CBRA models to 

improve the accuracy of toxicity prediction;

• Albeit structural alerts often fail as toxicity predictors they may be useful to split 

a large dataset into mechanism-based subsets for developing local QSAR 

models;

• An intelligent combination of alerts and QSAR models can be used for rationally 

designing functional compounds devoid of toxicity, i.e., for green chemistry 

applications.
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Figure 1. 
Contrasting alerts- and QSAR-based predictions in chemical safety assessment. Structural 

alerts are derived on small datasets and used in read-across for flagging unsafe compounds. 

QSAR models are developed on larger datasets and used to make binary, categorical, or 

quantitative prediction of compound toxicity.
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Figure 2. 
Comparison of the profiles of the most important descriptors for two strong THR binders 

that differ by only one -CH2- fragment.
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Figure 3. 
Evolution of toxicity of chloronitrobenzenes. The digits in the circles correspond to the 

positions of chlorines in aromatic ring.
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Figure 4. 
Relative influence of structural fragments on toxicity of chlorosubstituted nitrobenzenes.
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Figure 5. 
A workflow for generating QSAR-based structural alerts. As an example, QSAR-based 

structural alerts were used to guide molecular design of antiviral agents against human 

rhinovirus serotype 2.

Alves et al. Page 20

Green Chem. Author manuscript; available in PMC 2017 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Example of a structural transformation of pentanoic acid to octanoic acid to improve skin 

permeability (modified from Alves et al.68).
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Figure 7. 
Radial CBRA plot for eugenol. The central node representing the target compound eugenol 

is surrounded by biological (left side) and chemical (right side) neighbors. Jaccard distance 

is used to position the neighbors towards the target compound. Edges and nodes are colored 

according to the known activity classification (red = toxic, green = non-toxic).
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Figure 8. 
Integrative approach for chemical safety assessment of new chemicals by combining 

structural alerts and QSAR models.

Alves et al. Page 23

Green Chem. Author manuscript; available in PMC 2017 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alves et al. Page 24

Ta
b

le
 1

C
om

pa
ri

so
n 

of
 th

e 
pr

ed
ic

tio
n 

ac
cu

ra
ci

es
 o

f 
Q

SA
R

 m
od

el
s,

 s
ki

n 
se

ns
iti

za
tio

n 
m

od
ul

e 
of

 th
e 

O
E

C
D

 Q
SA

R
 T

oo
lb

ox
, a

nd
 O

C
H

E
M

 T
ox

A
le

rt
s.

Q
SA

R
 T

oo
lb

ox

Q
SA

R
 v

s.
 S

A
R

 r
ul

e 
to

ol
C

C
R

Se
ns

it
iv

it
y

P
P

V
Sp

ec
if

ic
it

y
N

P
V

Q
SA

R
0.

74
0.

50
0.

94
0.

98
0.

75

Q
SA

R
 T

oo
lb

ox
0.

46
0.

53
0.

38
0.

38
0.

53

O
C

H
E

M
 T

ox
A

le
rt

s

Q
SA

R
 v

s.
 S

A
R

 r
ul

e 
to

ol
C

C
R

Se
ns

it
iv

it
y

P
P

V
Sp

ec
if

ic
it

y
N

P
V

Q
SA

R
0.

80
0.

74
0.

90
0.

85
0.

64

To
xA

le
rt

s
0.

60
0.

84
0.

71
0.

36
0.

55

Green Chem. Author manuscript; available in PMC 2017 August 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alves et al. Page 25

Table 2

Examples of structural alerts and comparison of experimental and predicted skin sensitization effects for alert-

containing compounds.

Alerts Compounds containing the alert substructure

Activated
pyridine /

pyrimidine
QSAR

Toolbox

Ethyl 2,6-dichloro-5-fluoro-
β-oxo-3-pyridinepropanoate

LLNA: non-sensitizer
QSAR: non-sensitizer

QSAR Toolbox: sensitizer

N-(2-chloro-4-pyrimidinyl)-
N-2,3-trimethyl-2H-indazol-

6-amine
LLNA: non-sensitizer
QSAR: non-sensitizer

QSAR Toolbox: sensitizer

N-(2-chloro-4-pyrimidinyl)-
2,3-dimethyl-2H-indazol-6-

amine
LLNA: non-sensitizer
QSAR: non-sensitizer

QSAR Toolbox: sensitizer

Formyl
group

OCHEM ID:
TA264

Cinnamic aldehyde
LLNA: Sensitizer

ToxAlerts: Sensitizer
QSAR: Sensitizer

3-hydroxy-4-
methoxybenzaldehyde
LLNA: Non-sensitizer
ToxAlerts: Sensitizer

QSAR: Non-sensitizer

(2E)-2-methyl-2-butenal
LLNA: Non-sensitizer
ToxAlerts: Sensitizer

QSAR: Sensitizer

Aromatic
amines

OCHEM ID:
TA311

2-(4-Amino-2nitro-
phenylamino)-ethanol

LLNA: Sensitizer
ToxAlerts: Sensitizer

QSAR: Sensitizer

3,4-dichloroaniline
LLNA: Sensitizer

ToxAlerts: Sensitizer
QSAR: Non-sensitizer

Benzocaine
LLNA: Non-sensitizer
ToxAlerts: Sensitizer

QSAR: Non-sensitizer
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