23 research outputs found

    Photo- and electroluminescence of ambipolar, high-mobility, donor-acceptor polymers

    Get PDF
    AbstractDonor-acceptor polymers with narrow bandgaps are promising materials for bulk heterojunction solar cells and high-mobility field-effect transistors. They also emit light in the near-infrared. Here we investigate and compare the photoluminescence and electroluminescence properties of different narrow bandgap (<1.5 eV) donor-acceptor polymers with diketopyrrolopyrrole (DPP), isoindigo (IGT) and benzodipyrrolidone (BPT) cores, respectively. All of them show near-infrared photoluminescence quantum yields of 0.03–0.09% that decrease with decreasing bandgap. Bottom-contact/top-gate field-effect transistors show ambipolar charge transport with hole and electron mobilities between 0.02 and 0.7 cm2 V−1 s−1 and near-infrared electroluminescence. Their external quantum efficiencies reach up to 0.001%. The effect of polaron quenching and other reasons for the low electroluminescence efficiency of these high mobility polymers are investigated

    Plasmon-enhanced nonlinear optical properties of SiC nanoparticles

    No full text
    International audienc

    Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes

    No full text
    The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using, gate-voltage dependent electroluminescence, we spatially and spectrally reveal preferential charge transport:that toes not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification

    Plasmon-enhanced nonlinear optical properties of SiC nanoparticles

    No full text
    An original plasmonic nano-Ag/SiNx substrate was elaborated to strongly enhance the nonlinear response of SiC NPs for the first time. A plasmon-induced two order of magnitude increase of second-harmonic generation and two-photon excited photoluminescence was experimentally achieved. The measured enhancement factors were correlated with local field intensities theoretically estimated by finite-difference time-domain calculations. The obtained plasmon-enhanced nonlinear response of the SiC nanostructures make them promising in nonlinear optics applications

    Surface plasmon resonance-coupled photoluminescence and resistive switching behavior of pulsed laser-deposited Ag:SiC nanocermet thin films

    No full text
    In this study, Ag:SiC nanocermets were prepared via rapid thermal annealing (RTA) of pulsed laser-deposited SiC/Ag/SiC trilayers grown on Si substrate. Atomic force microscope images show that silver nanoparticles (Ag NPs) are formed after RTA, and the size of NPs increases with increasing Ag deposition time (t Ag). Sharp dip observed in the reflectance spectra confirmed the existence of Ag surface plasmons (SPs). The infrared transmission spectra showed an intense and broad absorption band around 780–800 cm−1 that can be assigned to Si-C stretching vibration mode. Influence of t Ag on the spectral characteristics of SP-enhanced photoluminescence (PL) and electrical properties of silicon carbide (SiC) films has been investigated. The maximum PL enhancement by 5.5 times for Ag:SiC nanocermets is achieved when t Ag ≈ 50 s. This enhancement is due to the strong resonant coupling between SiC and the SP oscillations of the Ag NPs. Presence of Ag NPs in SiC also induces a forming-free resistive switching with switching ratio of 2 × 10−2. The analysis of I–V curves demonstrates that the trap-controlled space-charge-limited conduction with filamentary model is the governing mechanism for the resistive switching in nanocerment thin films.This study has been partially funded by the (i) Portuguese Foundation for Science and Technology(FCT) under the project PTDC/FIS/098943/2008 and strategic project PEST-C/FIS/UI0607/2011 and (ii) European COST Actions MP0901-NanoTP and MP0903NanoAlloy. The authors K.K. and K.C.S. are grateful for the financial support through the FCT grants SFRH/BPD/87215/2012 and SFRH/BPD/68489/2010, respectively. The authors would also like to thank Engineer José Santos for the technical support at Thin Film Laboratory
    corecore