4 research outputs found

    Longitudinal variation in the ionosphere-plasmasphere system at the minimum of solar and geomagnetic activity: Investigation of temporal and latitudinal dependences

    No full text
    International audienceWe use the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) as the first-principle calculation of the physical system state, the quick-run ionospheric electron density model (NeQuick) as the climatology background, and the International Reference Ionosphere-based Real-Time Assimilative Model for a global view of the ionospheric weather during a quiet period of the December 2009 solstice. The model computations are compared to the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation profiles, CHAMP and Gravity Recovery and Climate Experiment in situ densities, and GPS total electron content (TEC). It is shown that the plasma density in the ionosphere is generally larger in the American/Atlantic longitudinal sector at any local time. The high-latitude density enhancements are visible in the GSM TIP output at different altitudes but are not reproduced by the NeQuick empirical model. Given that observational data confirm an existence of the high-latitude areas where ionospheric densities are elevated in the altitude range between 300 and 480 km, we conclude that the NmF2 maximum in the GSM TIP output can be trusted. Indeed, such high-latitude NmF2, ionospheric electron content, and TEC maxima in the American longitude sector form on the proper places as shown by the GSM TIP data, COSMIC and GPS observations. According to our results, the high-latitude maximum of NmF2 (1) manifests itself only when the integration over LT or UT of the global maps for 22 December 2009 includes nighttime, i.e., supporting an argument of its close association with the Weddell Sea Anomaly, and (2) also appears in the Ne distribution at altitudes above the F2 peak

    Identification of the mechanisms responsible for anomalies in the tropical lower thermosphere/ionosphere caused by the January 2009 sudden stratospheric warming

    No full text
    We apply the Entire Atmosphere GLobal (EAGLE) model to investigate the upper atmosphere response to the January 2009 sudden stratospheric warming (SSW) event. The model successfully reproduces neutral temperature and total electron content (TEC) observations. Using both model and observational data, we identify a cooling in the tropical lower thermosphere caused by the SSW. This cooling affects the zonal electric field close to the equator, leading to an enhanced vertical plasma drift. We demonstrate that along with a SSW-related wind disturbance, which is the main source to form a dynamo electric field in the ionosphere, perturbations of the ionospheric conductivity also make a significant contribution to the formation of the electric field response to SSW. The post-sunset TEC enhancement and pre-sunrise electron content reduction are revealed as a response to the 2009 SSW. We show that at post-sunset hours the SSW affects low-latitude TEC via a disturbance of the meridional electric field. We also show that the phase change of the semidiurnal migrating solar tide (SW2) in the neutral wind caused by the 2009 SSW at the altitude of the dynamo electric field generation has a crucial importance for the SW2 phase change in the zonal electric field. Such changes lead to the appearance of anomalous diurnal variability of the equatorial electromagnetic plasma drift and subsequent low-latitudinal TEC disturbances in agreement with available observations. Plain Language Summary – Entire Atmosphere GLobal model (EAGLE) interactively calculates the troposphere, stratosphere, mesosphere, thermosphere, and plasmasphere–ionosphere system states and their response to various natural and anthropogenic forcing. In this paper, we study the upper atmosphere response to the major sudden stratospheric warming that occurred in January 2009. Our results agree well with the observed evolution of the neutral temperature in the upper atmosphere and with low-latitude ionospheric disturbances over America. For the first time, we identify an SSW-related cooling in the tropical lower thermosphere that, in turn, could provide additional information for understanding the mechanisms for the generation of electric field disturbances observed at low latitudes. We show that the SSW-related vertical electromagnetic drift due to electric field disturbances is a key mechanism for interpretation of an observed anomalous diurnal development of the equatorial ionization anomaly during the 2009 SSW event. We demonstrate that the link between thermospheric winds and the ionospheric dynamo electric field during the SSW is attained through the modulation of the semidiurnal migrating solar tide

    Pre-Earthquakes: Processing Russian and European Earth observations for earthquake precursors studies

    No full text
    The scientific objective of Pre-Earthquakes is to demonstrate how far the systematic integration of measures of different physical and chemical parameters may improve our present ability to forecast strong earthquakes in the short term. Observations are collected from 18 different satellite systems and more than 100 ground stations will be used to study the anomalous variations of surface and atmospheric parameters (up to the ionosphere) that have long been proposed as possible precursors of strong earthquakes. The Sakhalin peninsula in eastern Russia, Turkey and Italy have been selected as initial testing areas where observation integration will be particularly intensified up to a period of real-time monitoring at the end of the project, expected for December 2012. After only 1 year of activity, automatic data-product generation chains were fully implemented for seven monitored parameters, using 20 independent observing technologies (including both satellite systems and ground stations), 11 different data analysis algorithms for (more than) three testing areas and 24 different testing periods. A Pre-Earthquakes Geoportal (PEG), is now ready to operate, serving product integration, cross-validation and scientific interpretation not only for project partners but also for networking members (presently more than 20) asking to join the project in the framework of the EQuOS (Earthquake Observation System) initiative. In this paper project rationale, scientific approach and achieved results to date are briefly presented
    corecore