5,610 research outputs found
A Discrete Version of the Inverse Scattering Problem and the J-matrix Method
The problem of the Hamiltonian matrix in the oscillator and Laguerre basis
construction from the S-matrix is treated in the context of the algebraic
analogue of the Marchenko method.Comment: 11 pages. The Laguerre basis case is adde
Quantitative Simulation of the Superconducting Proximity Effect
A numerical method is developed to calculate the transition temperature of
double or multi-layers consisting of films of super- and normal conductors. The
approach is based on a dynamic interpretation of Gorkov's linear gap equation
and is very flexible. The mean free path of the different metals, transmission
through the interface, ratio of specular reflection to diffusive scattering at
the surfaces, and fraction of diffusive scattering at the interface can be
included. Furthermore it is possible to vary the mean free path and the BCS
interaction NV in the vicinity of the interface. The numerical results show
that the normalized initial slope of an SN double layer is independent of
almost all film parameters except the ratio of the density of states. There are
only very few experimental investigations of this initial slope and they
consist of Pb/Nn double layers (Nn stands for a normal metal). Surprisingly the
coefficient of the initial slope in these experiments is of the order or less
than 2 while the (weak coupling) theory predicts a value of about 4.5. This
discrepancy has not been recognized in the past. The autor suggests that it is
due to strong coupling behavior of Pb in the double layers. The strong coupling
gap equation is evaluated in the thin film limit and yields the value of 1.6
for the coefficient. This agrees much better with the few experimental results
that are available.
PACS: 74.45.+r, 74.62.-c, 74.20.F
NN potentials from inverse scattering in the J-matrix approach
An approximate inverse scattering method [7,8] has been used to construct
separable potentials with the Laguerre form factors. As an application, we
invert the phase shifts of proton-proton in the and
channels and neutron-proton in the channel elastic scattering. In
the latter case the deuteron wave function of a realistic potential was
used as input.Comment: LaTex2e, 17 pages, 3 Postscript figures; corrected typo
Experimental evidence of ageing and slow restoration of the weak-contact configuration in tilted 3D granular packings
Granular packings slowly driven towards their instability threshold are
studied using a digital imaging technique as well as a nonlinear acoustic
method. The former method allows us to study grain rearrangements on the
surface during the tilting and the latter enables to selectively probe the
modifications of the weak-contact fraction in the material bulk. Gradual ageing
of both the surface activity and the weak-contact reconfigurations is observed
as a result of repeated tilt cycles up to a given angle smaller than the angle
of avalanche. For an aged configuration reached after several consecutive tilt
cycles, abrupt resumption of the on-surface activity and of the weak-contact
rearrangements occurs when the packing is subsequently inclined beyond the
previous maximal tilting angle. This behavior is compared with literature
results from numerical simulations of inclined 2D packings. It is also found
that the aged weak-contact configurations exhibit spontaneous restoration
towards the initial state if the packing remains at rest for tens of minutes.
When the packing is titled forth and back between zero and near-critical
angles, instead of ageing, the weak-contact configuration exhibits "internal
weak-contact avalanches" in the vicinity of both the near-critical and zero
angles. By contrast, the stronger-contact skeleton remains stable
Severe discrepancies between experiment and theory in the superconducting proximity effect
The superconducting proximity effect is investigated for SN double layers in
a regime where the resulting transition temperature T_{c} does not depend on
the mean free paths of the films and, within limits, not on the transparency of
the interface. This regime includes the thin film limit and the normalized
initial slope S_{sn}= (d_{s}/T_{s})|dT_{c}/dd_{n}|. The experimental results
for T_{c} are compared with a numerical simulation which was recently developed
in our group. The results for the SN double layers can be devided into three
groups: (i) When N = Cu, Ag, Au, Mg a disagreement between experiment and
theory by a factor of the order of three is observed, (ii) When N = Cd, Zn, Al
the disagreement between experiment and theory is reduced to a factor of about
1.5, (iii) When N = In, Sn a reasonably good agreement between experiment and
theory is observed
Collective Dynamics of One-Dimensional Charge Density Waves
The effect of disorder on the static and dynamic behaviour of one-dimensional
charge density waves at low temperatures is studied by analytical and numerical
approaches. In the low temperature region the spatial behaviour of the
phase-phase correlation function is dominated by disorder but the roughness
exponent remains the same as in the pure case. Contrary to high dimensional
systems the dependence of the creep velocity on the electric field is described
by an analytic function.Comment: 4 pages, 4 figure
Proximity Effect in Normal Metal - High Tc Superconductor Contacts
We study the proximity effect in good contacts between normal metals and high
Tc (d-wave) superconductors. We present theoretical results for the spatially
dependent order parameter and local density of states, including effects of
impurity scattering in the two sides, s-wave pairing interaction in the normal
metal side (attractive or repulsive), as well as subdominant s-wave paring in
the superconductor side. For the [100] orientation, a real combination d+s of
the order parameters is always found. The spectral signatures of the proximity
effect in the normal metal includes a suppression of the low-energy density of
states and a finite energy peak structure. These features are mainly due to the
impurity self-energies, which dominate over the effects of induced pair
potentials. For the [110] orientation, for moderate transparencies, induction
of a d+is order parameter on the superconductor side, leads to a proximity
induced is order parameter also in the normal metal. The spectral signatures of
this type of proximity effect are potentially useful for probing time-reversal
symmetry breaking at a [110] interface.Comment: 10 pages, 10 figure
Quasiparticle states of the Hubbard model near the Fermi level
The spectra of the t-U and t-t'-U Hubbard models are investigated in the
one-loop approximation for different values of the electron filling. It is
shown that the four-band structure which is inherent in the case of
half-filling and low temperatures persists also for some excess or deficiency
of electrons. Besides, with some departure from half-filling an additional
narrow band of quasiparticle states arises near the Fermi level. The dispersion
of the band, its bandwidth and the variation with filling are close to those of
the spin-polaron band of the t-J model. For moderate doping spectral
intensities in the new band and in one of the inner bands of the four-band
structure decrease as the Fermi level is approached which leads to the
appearance of a pseudogap in the spectrum.Comment: 8 pages, 7 figure
Non-local electron transport and cross-resistance peak in NSN heterostructures
We develop a microscopic theory describing the peak in the temperature
dependence of the non-local resistance of three-terminal NSN devices. This peak
emerges at sufficiently high temperatures as a result of a competition between
quasiparticle/charge imbalance and subgap (Andreev) contributions to the
conductance matrix. Both the height and the shape of this peak demonstrate the
power law dependence on the superconductor thickness in contrast to the
zero-temperature non-local resistance which decays (roughly) exponentially with
increasing . A similar behavior was observed in recent experiments.Comment: 4 pages, 3 figure
- …