5,551 research outputs found

    A Discrete Version of the Inverse Scattering Problem and the J-matrix Method

    Full text link
    The problem of the Hamiltonian matrix in the oscillator and Laguerre basis construction from the S-matrix is treated in the context of the algebraic analogue of the Marchenko method.Comment: 11 pages. The Laguerre basis case is adde

    Quantitative Simulation of the Superconducting Proximity Effect

    Full text link
    A numerical method is developed to calculate the transition temperature of double or multi-layers consisting of films of super- and normal conductors. The approach is based on a dynamic interpretation of Gorkov's linear gap equation and is very flexible. The mean free path of the different metals, transmission through the interface, ratio of specular reflection to diffusive scattering at the surfaces, and fraction of diffusive scattering at the interface can be included. Furthermore it is possible to vary the mean free path and the BCS interaction NV in the vicinity of the interface. The numerical results show that the normalized initial slope of an SN double layer is independent of almost all film parameters except the ratio of the density of states. There are only very few experimental investigations of this initial slope and they consist of Pb/Nn double layers (Nn stands for a normal metal). Surprisingly the coefficient of the initial slope in these experiments is of the order or less than 2 while the (weak coupling) theory predicts a value of about 4.5. This discrepancy has not been recognized in the past. The autor suggests that it is due to strong coupling behavior of Pb in the double layers. The strong coupling gap equation is evaluated in the thin film limit and yields the value of 1.6 for the coefficient. This agrees much better with the few experimental results that are available. PACS: 74.45.+r, 74.62.-c, 74.20.F

    NN potentials from inverse scattering in the J-matrix approach

    Get PDF
    An approximate inverse scattering method [7,8] has been used to construct separable potentials with the Laguerre form factors. As an application, we invert the phase shifts of proton-proton in the 1S0^1S_0 and 3P23F2^3P_2-^3F_2 channels and neutron-proton in the 3S13D1^3S_1-^3D_1 channel elastic scattering. In the latter case the deuteron wave function of a realistic npnp potential was used as input.Comment: LaTex2e, 17 pages, 3 Postscript figures; corrected typo

    Experimental evidence of ageing and slow restoration of the weak-contact configuration in tilted 3D granular packings

    Full text link
    Granular packings slowly driven towards their instability threshold are studied using a digital imaging technique as well as a nonlinear acoustic method. The former method allows us to study grain rearrangements on the surface during the tilting and the latter enables to selectively probe the modifications of the weak-contact fraction in the material bulk. Gradual ageing of both the surface activity and the weak-contact reconfigurations is observed as a result of repeated tilt cycles up to a given angle smaller than the angle of avalanche. For an aged configuration reached after several consecutive tilt cycles, abrupt resumption of the on-surface activity and of the weak-contact rearrangements occurs when the packing is subsequently inclined beyond the previous maximal tilting angle. This behavior is compared with literature results from numerical simulations of inclined 2D packings. It is also found that the aged weak-contact configurations exhibit spontaneous restoration towards the initial state if the packing remains at rest for tens of minutes. When the packing is titled forth and back between zero and near-critical angles, instead of ageing, the weak-contact configuration exhibits "internal weak-contact avalanches" in the vicinity of both the near-critical and zero angles. By contrast, the stronger-contact skeleton remains stable

    Severe discrepancies between experiment and theory in the superconducting proximity effect

    Full text link
    The superconducting proximity effect is investigated for SN double layers in a regime where the resulting transition temperature T_{c} does not depend on the mean free paths of the films and, within limits, not on the transparency of the interface. This regime includes the thin film limit and the normalized initial slope S_{sn}= (d_{s}/T_{s})|dT_{c}/dd_{n}|. The experimental results for T_{c} are compared with a numerical simulation which was recently developed in our group. The results for the SN double layers can be devided into three groups: (i) When N = Cu, Ag, Au, Mg a disagreement between experiment and theory by a factor of the order of three is observed, (ii) When N = Cd, Zn, Al the disagreement between experiment and theory is reduced to a factor of about 1.5, (iii) When N = In, Sn a reasonably good agreement between experiment and theory is observed

    Collective Dynamics of One-Dimensional Charge Density Waves

    Full text link
    The effect of disorder on the static and dynamic behaviour of one-dimensional charge density waves at low temperatures is studied by analytical and numerical approaches. In the low temperature region the spatial behaviour of the phase-phase correlation function is dominated by disorder but the roughness exponent remains the same as in the pure case. Contrary to high dimensional systems the dependence of the creep velocity on the electric field is described by an analytic function.Comment: 4 pages, 4 figure

    Proximity Effect in Normal Metal - High Tc Superconductor Contacts

    Full text link
    We study the proximity effect in good contacts between normal metals and high Tc (d-wave) superconductors. We present theoretical results for the spatially dependent order parameter and local density of states, including effects of impurity scattering in the two sides, s-wave pairing interaction in the normal metal side (attractive or repulsive), as well as subdominant s-wave paring in the superconductor side. For the [100] orientation, a real combination d+s of the order parameters is always found. The spectral signatures of the proximity effect in the normal metal includes a suppression of the low-energy density of states and a finite energy peak structure. These features are mainly due to the impurity self-energies, which dominate over the effects of induced pair potentials. For the [110] orientation, for moderate transparencies, induction of a d+is order parameter on the superconductor side, leads to a proximity induced is order parameter also in the normal metal. The spectral signatures of this type of proximity effect are potentially useful for probing time-reversal symmetry breaking at a [110] interface.Comment: 10 pages, 10 figure

    Quasiparticle states of the Hubbard model near the Fermi level

    Full text link
    The spectra of the t-U and t-t'-U Hubbard models are investigated in the one-loop approximation for different values of the electron filling. It is shown that the four-band structure which is inherent in the case of half-filling and low temperatures persists also for some excess or deficiency of electrons. Besides, with some departure from half-filling an additional narrow band of quasiparticle states arises near the Fermi level. The dispersion of the band, its bandwidth and the variation with filling are close to those of the spin-polaron band of the t-J model. For moderate doping spectral intensities in the new band and in one of the inner bands of the four-band structure decrease as the Fermi level is approached which leads to the appearance of a pseudogap in the spectrum.Comment: 8 pages, 7 figure

    Non-local electron transport and cross-resistance peak in NSN heterostructures

    Full text link
    We develop a microscopic theory describing the peak in the temperature dependence of the non-local resistance of three-terminal NSN devices. This peak emerges at sufficiently high temperatures as a result of a competition between quasiparticle/charge imbalance and subgap (Andreev) contributions to the conductance matrix. Both the height and the shape of this peak demonstrate the power law dependence on the superconductor thickness LL in contrast to the zero-temperature non-local resistance which decays (roughly) exponentially with increasing LL. A similar behavior was observed in recent experiments.Comment: 4 pages, 3 figure
    corecore